

© Decawave 2019 Qorvo 2021 SW-DW3000-TWR-demo-1.2

 DW3000-TWR-demo

Version 1.2

DW3000-TWR-demo

© Decawave 2019 Qorvo 2021 SW-DW3000-TWR-demo-1.2 Page 2

TABLE OF CONTENTS

1 INTRODUCTION ... 4

1.1 BASIC OPERATION ... 4

1 DESCRIPTION OF JUNIPER ARM PLATFORM .. 5

1.1 JUNIPER ARCHITECTURE .. 5
1.1.1 Top-level applications layer ... 5
1.1.2 Core tasks .. 5
1.1.3 Drivers ... 6
1.1.4 FreeRTOS ... 6
1.1.5 Target HAL ... 6

1.2 JUNIPER SOURCE CODE - FOLDER STRUCTURE ... 7

2 OPERATION OF THE MAIN CODE .. 8

2.1 STARTUP, INITIAL HAL CONFIGURATION AND STARTING OF THE KERNEL .. 8
2.2 CORE TASKS ... 9

2.2.1 Default task ... 9
2.2.2 USB_VBUS driver ... 9

2.3 CONTROL TASK: MODES OF OPERATION... 10
2.3.1 Command mode of Control task.. 11
2.3.2 Controlling of the embedded applications over a PC GUI app .. 14

2.4 FLUSH TASK .. 20
2.5 RTOS EXTENSIONS USED IN THE APPLICATION .. 21

3 IN DEEP ABOUT TOP-LEVEL APPLICATIONS ... 22

3.1 NODE TOP-LEVEL APPLICATION .. 22
3.1.1 Concept of Discovered and Known tags lists ... 24
3.1.2 Discovery and ranging to tags ... 24
3.1.3 The superframe, the wakeup timers and the tag’s slot correction 25

3.2 TAG TOP-LEVEL APPLICATION .. 27
3.2.1 The Discovery phase .. 28
3.2.2 The Ranging phase .. 28

3.3 USB2SPI TOP-LEVEL APPLICATION .. 30
3.4 TCWM TOP-LEVEL APPLICATIONS .. 30
3.5 TCFM TOP-LEVEL APPLICATIONS ... 31
3.6 LISTENER TOP-LEVEL APPLICATION .. 31
3.7 LOW POWER MODE IN JUNIPER APPLICATIONS ... 31

4 BUILDING AND RUNNING THE CODE .. 32

4.1 BUILDING THE CODE .. 32
4.2 DOWNLOADING AND RUNNING THE CODE ... 32

5 APPENDIX A .. 33

5.1 TWO WAY RANGING ALGORITHM .. 33
5.2 UWB CONFIGURATION AND TWR TIMING PROFILE USED IN THE SYSTEM .. 34
5.3 FRAME TIME ADJUSTMENTS .. 34
5.4 UWB MESSAGES, USED IN TWR PROCESS ... 35

5.4.1 Tag blink message ... 35
5.4.2 Ranging Config message ... 35
5.4.3 Ranging messages ... 37
5.4.4 The Poll message ... 37

DW3000-TWR-demo

© Decawave 2019 Qorvo 2021 SW-DW3000-TWR-demo-1.2 Page 3

5.5 SLOT TIME CORRECTION METHOD IN BETWEEN NODE AND TAG .. 39
5.6 THE APPLICATION ARCHITECTURE IN THE FLOWCHART .. 40

6 BIBLIOGRAPHY .. 44

7 REVISION HISTORY .. 45

8 FURTHER INFORMATION ... 46

LIST OF TABLES

TABLE 1: ANYTIME COMMANDS ... 11
TABLE 2: COMMANDS TO CHANGE MODE OF OPERATION ... 12
TABLE 3: COMMANDS TO CHANGE RUN-TIME PARAMETERS .. 12
TABLE 4: THE PC TO THE NODE TOP-LEVEL APPLICATION COMMANDS .. 15
TABLE 5: NODE TOP-LEVEL APPLICATION JSON OUTPUTS ... 17
TABLE 6: TOP-LEVEL APPLICATIONS AND CORRESPONDED COMMANDS ... 22
TABLE 7: UWB MODE OF OPERATION OF SYSTEM ... 34
TABLE 8: FIELDS WITHIN THE RANGING CONFIG MESSAGE .. 36
TABLE 9: LIST OF FUNCTION CODES IN THE TWR EXCHANGE .. 37
TABLE 10: FIELDS WITHIN THE RANGING POLL MESSAGE .. 37
TABLE 11: FIELDS WITHIN THE RANGING RESPONSE MESSAGE ... 38
TABLE 12: FIELDS WITHIN THE RANGING FINAL MESSAGE ... 38

LIST OF FIGURES

FIGURE 1: DISCOVERY AND RANGING PHASES ... 4
FIGURE 2: ARCHITECTURE OF THE TWR APPLICATION .. 5
FIGURE 3: JUNIPER SOURCE CODE FOLDER STRUCTURE ... 7
FIGURE 4: INITIAL STARTUP WORKFLOW .. 8
FIGURE 5: CONTROL TASK (IN COMMAND MODE) SENDS EVENT TO THE DEFAULT TASK.. 10
FIGURE 6: CONTROL TASK (IN DATA MODE) SENDS SIGNAL TO THE USB2SPI APPLICATION 10
FIGURE 7: OUTPUT DATA USING SHARED REPORT BUFFER .. 20
FIGURE 8: NODE TOP-LEVEL APPLICATION .. 23
FIGURE 9: TASKS USED IN THE NODE APPLICATION... 24
FIGURE 10: SUPERFRAME STRUCTURE AND RANGING EXCHANGE TIME PROFILE .. 25
FIGURE 11: TAG TOP-LEVEL APPLICATION .. 27
FIGURE 12: TAG’S DISCOVERY PHASE: RX THREAD .. 28
FIGURE 13: TAG'S RANGING PHASE: POLL THREAD ... 29
FIGURE 14: TAG’S RANGING PHASE: RX THREAD .. 29
FIGURE 15: USB2SPI TOP-LEVEL APPLICATION .. 30
FIGURE 16: DISTANCE CALCULATION IN TWR .. 33
FIGURE 17: TWR TIMING PROFILE ... 34
FIGURE 18: ENCODING OF TAG'S 12-BYTES BLINK MESSAGE ... 35
FIGURE 19: FRAME FORMAT OF RANGING CONFIG MESSAGE .. 36
FIGURE 20: FRAME FORMAT USED FOR RANGING ... 37
FIGURE 21: NODE-TAG SLOT TIME CORRECTION METHOD .. 39
FIGURE 22 COMMON PLATFORM BLOCKS .. 41
FIGURE 23 OPERATIONAL FLOW ON THE "TAG" TOP-LEVEL APPLICATION .. 42
FIGURE 24 OPERATIONAL FLOW ON THE "NODE" TOP-LEVEL APPLICATION .. 43

file:///C:/Software/SVN/Products/DW3000-TWR-demo/Source-Code-Guide/SW-DW3000-TWR-demo.docx%23_Toc46738353
file:///C:/Software/SVN/Products/DW3000-TWR-demo/Source-Code-Guide/SW-DW3000-TWR-demo.docx%23_Toc46738354

DW3000-TWR-demo

© Decawave 2019 Qorvo 2021 SW-DW3000-TWR-demo-1.2 Page 4

1 INTRODUCTION

This document describes the operation of DW3000 TWR demo (Juniper) applications. The demo
consists of two EVK3000 units with DW3000 IC, one running a Node application and the other a Tag
application. The basic operation of the demo is outlined below.

The application source code employs a real-time operating system (FreeRTOS) [www.freertos.org],
however it is possible to use another RTOS or potentially remove the operating system and
implement the node application using a Round Robin scheduling with interrupts technique (main
super loop).

1.1 Basic operation

The basic operation of the system is as follows: The node performs double-sided two-way ranging
with a tag, and then calculates the range (and optionally PDoA with tag’s x, y location coordinates)
and reports the results to an external application (e.g. PC GUI application). The PC GUI application
then plots the position of the tags based on the reported values.

Tags start operating in Discovery mode, periodically sending Blink messages, 5.4.1.The node listens
for Blink messages from tags and when a Blink message is received, the node responds to the tag
with a Ranging Config message, 5.4.2. The Ranging Config message provides information to the tag
describing how to perform ranging with the node. This information includes the PAN ID, the short
address of the node, a short address assignment for the tag, timing parameters for the ranging
phase to be used at the start of the next ranging exchange. Upon receiving the Ranging Config
message, the tag operation changes to the Ranging mode where it periodically initiates ranging
exchanges with the node. Figure 1 describes the Discovery and Ranging phases.

Each ranging exchange starts with the tag sending a Poll message, 5.4.4. When the node receives the
Poll message, it replies with a Response message, 5.4.4.1, and the tag completes the ranging
exchange by sending a Final message, 5.4.4.2. The node then calculates the range to the tag which it
reports via USB/UART for displaying by the PC GUI application. NOTE: when using configurations
with STS modes, the STS timestamp should be validated before replying to the Poll or Response
messages.

Figure 1: Discovery and ranging phases

Poll

Response

Final

Tag sleeps before

sending another Poll

Node listens for

next Poll

Unpaired tag sends

periodic blinks, listens for

a response and sleepsBlink

Blink

Sleep

Blink

Ranging Config

Sleep

Tag sees the Ranging Config

message and pairs with the

node

Node is in listener mode

while not actively ranging

with a tag

Node decides to pair with this

tag for ranging and sends the

Ranging Config response

message

Discovery Phase

Node calculates the range and

PDOA, and calculates timing

correction to send to tag so it

can adjust its sleep period so it

stays in the correct slot

Ranging Phase

DW3000-TWR-demo

© Decawave 2019 Qorvo 2021 SW-DW3000-TWR-demo-1.2 Page 5

1 DESCRIPTION OF JUNIPER ARM PLATFORM

Juniper platform is based on STM32 ARM Cortex M4F MCU. The sections below discuss the
architecture, structure and workflow of the software, residing in the microcontroller. This should
enable the developer to understand the philosophy and be able to add functionality or port the project
to another platform, if necessary (i.e. to other Cortex M4 or to another architecture).

1.1 Juniper architecture

An overview of the architecture is given by Figure 2 below. The figure shows, that the platform can be
structured as layers (or levels) of code, namely: “Top-level applications”, “Core tasks”, “FreeRTOS”,
“Drivers” and “HAL” which interacts with the corresponding physical interfaces. The detailed scheme of
interaction between software blocks is given in Appendix A, section 5.

Figure 2: Architecture of the TWR application

1.1.1 Top-level applications layer

This is the top level of the software defining the operation of the Juniper unit. It has seven separate
top-level applications / modes of operation. There are two main modes, namely “NODE” and “TAG”,
whose operation and functionality was introduced in section 1.1, while the other five operational
modes are used for testing purposes.

These are: TCFM – Test Continuous Frame transmission Mode; TCWM – Test Continuous Wave
transmission Mode; TRILAT – the Mode when Juniper Runs the Trilateration function on the top of the
NODE application; LISTENER puts the device into receive mode and reports any received packets,
and USB2SPI test mode, allowing external test software direct access to the DW3000 over SPI.

The top-level applications cannot run concurrently since they use the same resources: e.g. NODE
application configures the DW3000 to do two-way ranging, while TCWM application initializes
DW3000 to run a Continuous Wave mode test.

1.1.2 Core tasks

The core tasks are always running once the RTOS kernel has been started. These core tasks are
described in section 2.2. The core tasks are:

 Top-level

 applications

TRILAT LISTENER

Physical interfaces

DW3000

Device Driver

DW3000 UWB radio I/O
USB

I/O
UART I/O

Target HAL (CubeMx)

SPI/USB/UART

Drivers

TCFM

USB2SPI

Core tasks

ControlFlush Default

F
re

e
R

T
O

S

TCWM
TAG

TX RX TX RX

NODE RX

TX RX

DW3000-TWR-demo

© Decawave 2019 Qorvo 2021 SW-DW3000-TWR-demo-1.2 Page 6

• The Default core task is responsible for starting one of the top-level applications. It receives

events from the Control task to switch to a particular mode of operation and starts

corresponding top-level application. This is described in detail in section: 2.2.1

• The Control core task is responsible for reception and execution of commands from external

IO interfaces USB and/or UART. The Control task can also pass data from those I/O

interfaces to the top-application layer. This is described in detail in section: 2.3.

• The Flush core task is responsible for transmitting of any output data to the external I/O

interfaces USB and/or UART. This is described in detail in section 2.4.

1.1.3 Drivers

The drivers are responsible for translating of higher-layer requests and the specific sequences to
control particular peripherals.
To control the DW3000 UWB radio transceivers the DW3000 API and the device driver is
incorporated as a library. Other physical interfaces have corresponding drivers, namely UART, USB,
etc.

1.1.4 FreeRTOS

Juniper platform runs under the FreeRTOS operating system control. This is a CMSIS compatible
RTOS, thus the Juniper software is portable to other CMSIS-RTOS if needed. The CMSIS-RTOS is a
common API for Real-Time operating systems. It provides a standardized programming interface that
is portable to many RTOS and enables therefore software templates, middleware, libraries, and other
components that can work across supported the RTOS systems.

Juniper software has two layers of operation: RTOS tasks, which run concurrently, and bare-metal
functions, which run under the operation of the RTOS based application. Potentially it is possible to
remove RTOS tasks, and implement their functionality using Round Robin technique (super loop),
however this may lead to a complex times management and complexity in the code (spaghetti-code).
Some of the bare-metal functions, such as SPI driver are running below the RTOS priority, which
means that they cannot be interrupted by the RTOS or use RTOS mechanisms for communications.
This is done to increase the performance of running applications.

1.1.5 Target HAL

Juniper software employs a combination of HAL (Hardware Abstraction Layer) and LL (Low-Level)
drivers, generated by the CubeMX PC application from ST microelectronics, to interact to the physical
peripherals of the ST microcontroller [www.st.com].
For performance reasons, LL drivers are used for SPI & DMA drivers to the DW3000 chips. HAL
drivers are used for all other peripherals: UART, USB and GPIO.

http://www.st.com/

DW3000-TWR-demo

© Decawave 2019 Qorvo 2021 SW-DW3000-TWR-demo-1.2 Page 7

1.2 Juniper source code - folder structure

The initial folder structure was created using the CubeMX software from ST microelectronics, see

Figure 3 below. CubeMX is a tool that simplifies the initial creation of a project by providing the

complete code for the initialization of the peripherals.

Figure 3: Juniper source code folder structure

Folder
name

Description

Docs Doxygen documentation script

Debug_
STANDALONE

The target build directory. The name can be
changed in the Makefile.

Drivers This folder contains the HAL and LL drivers for
STM32F429, generated by CubeMX, and
Decadriver library

Core/Inc This folder contains header files, generated by
CubeMX.

Middlewares This folder contains the USB device library and
FreeRTOS source code, generated by
CubeMX.

Core/Src TWR Demo’s main project folder, where:

• “apps” – collection of top-level

applications;

• “boot” – ant bootloader;

• “config” – configuration files;

• “core” – collection of «Core» tasks;

• “Inc” – common header files;

• “platform_stm32F429” – folder with

platform-dependent files;

• “srv” – collection of support service

utilities.

DW3000-TWR-demo

© Decawave 2019 Qorvo 2021 SW-DW3000-TWR-demo-1.2 Page 8

2 OPERATION OF THE MAIN CODE

Please read this chapter with project’s code opened in your preferred editor, e.g. Eclipse or similar.
Initially open the main.c file from Src folder, where the main() - entry point to the application is located.

2.1 Startup, initial HAL configuration and starting of the kernel

At entry point of the main() the RTOS is not configured and is not running. The code in main() file
provides the initial hardware configuration using ST HAL libraries, initialises the core tasks and starts
the RTOS kernel.
At the startup, the main() loads the saved configuration from the FConfig, which is the Non Volatile
Memory (NVM) of the MCU (in the target ARM it’s organized as a part of Flash memory), into the
RAM segment, called bssConfig. On the run-time the application uses the configuration parameters
from bssConfig only.
The bssConfig parameters may be updated by the Control task and saved to the Fconfig section of
NVM.
NOTE: the application has two configuration sections in the NVM memory, called defaultConfig and
FConfig, and one section in the RAM memory, called bssConfig. The defaultConfig NVM segment
stores the default data configuration and this cannot be changed, but can be used to restore the
initial configuration. The FConfig NVM segment stores the current configuration, which can be
updated by the Control task. The bssConfig RAM segment holds the actual run-time working
parameters copied from FConfig during the startup.
All globally accessible variables are defined in the global “app” structure.
app_t app; /**< All global variables are in the "app" structure */

load_bssConfig();/**< load the RAM Configuration parameters from NVM block

*/

app.pConfig = get_pbssConfig();/* app.pConfig is pointed to the RAM

(bssConfig)*/

After loading the configuration parameters, the main() code initialises the core tasks and enables the
Real-Time kernel, see Figure 4. After starting the RTOS kernel, the core tasks will begin to run “in
parallel”, each executing its dedicated role.

Figure 4: Initial startup workflow

Power on, read config

Control Task
Processes the
input received

from USB/UART

Flush Task
 Sends data from

Report buffer
over UART/USB

Default Task
Selects top-level

application to
run

USB VBUS driver
Manages of a

USB subsystem
to a host

Start RTOS kernel (scheduler)

DW3000-TWR-demo

© Decawave 2019 Qorvo 2021 SW-DW3000-TWR-demo-1.2 Page 9

2.2 Core tasks

There are several logically different core functions required to run the application. These functions are
implemented within core tasks that will constantly run “in parallel”.All core tasks have lower priority
(less important) than top-level application tasks, thus core tasks can be interrupted by the RTOS
kernel when more important thread needs to process the data (i.e. RxTask, CalcTask, see 3.1).

The core tasks consist in the following:

• The Default task, which is coded in the DefaultTask(), is responsible for starting individual top-

level application tasks which operate in a mutually exclusive way with the DW3000’s because

they cannot share this unique resources for their operation, i.e. only one of these top-level tasks is

enabled to run at any one time. This is described in more detail in section 2.2.1.

• The USB_VBUS pin driver coded as a dummy loop of the DefaultTask(). It periodically polls the

status of MCU’s VBUS pin and on connection to the +5V source it starts/stops the USB HAL, see

2.2.2.

• The Control task, which is coded in the CtrlTask(), is responsible for reading of the input from

USB and UART, translating it to the appropriate command and executing of that command, see 0.

• The Flush task, coded in the FlushTask() is attempting to output all data to USB and UART from

the common circular report buffer Report.buf, which used as a common data storage for all output

information coming from any running processes, see 2.4.

There is one more special core task, called the Idle() task, which is created automatically when the
RTOS scheduler is started. It is created at the lowest possible priority to ensure it does not use any
CPU time if there are higher priority tasks in the ready state. The power-saving mode of the MCU can
be implemented as a part of this task.

2.2.1 Default task

The Default task waits for a global event xStartTaskEvent, which instructs it to enable a particular top-
level application task, depending on the requested operation mode. This event can be received from

Control task or as a part of parsing of initial configuration, see Figure 5 below.

On reception of non-empty xStartTaskEvent, the Default task stops all running top-level tasks and
their corresponded processes, and then starts the requested top-level application from its initial
condition.
Alternatively, if the xStartTaskEvent is empty, the Default task periodically executes the USB_VBUS
driver, by running it every USB_DRV_UPDATE_MS.\

2.2.2 USB_VBUS driver

The USB_VBUS pin driver, coded in the usb_vbus_driver(), runs every USB_DRV_UPDATE_MS as a
dummy-loop of the DefaultTask() task to check whether the VBUS pin of the MCU is attached to a
power source or not. On connection of USB_VBUS pin to the power source, (host PC or wall
adapter), the driver configures the USB CDC interface of the MCU and, if the USB handshake is
successful, it allows to the FlushTask() to output to the USB. Vice versa, on disconnection of VBUS
pin of the MCU, the driver will cease output to the USB and release the CDC interface.
Note, the FlushTask() can output to both USB and UART simultaneously. If USB is detached, the
FlushTask() still able to output to the UART, if the parameter “pConfig->s.uart” is configured in the
FConfig, this can be toggled with command “UART” from Table 3 below.

http://www.freertos.org/RTOS-task-priority.html
http://www.freertos.org/RTOS-task-states.html

DW3000-TWR-demo

© Decawave 2019 Qorvo 2021 SW-DW3000-TWR-demo-1.2 Page 10

2.3 Control task: modes of operation

The Control task awaits an input on a USB and/or UART interfaces. The task has two modes of
operation, Command mode and Data mode.
The Control task in Command operational mode, see Figure 5, parses and executes a command, and
can set an event to xStartTaskEvent, which will be received by Default task. More details of
Command mode of operation of Control task is given in the paragraph 2.3.1.

Figure 5: Control task (in command mode) sends EVENT to the Default task

Importantly, on the reception of a USPI command from a PC, see Table 2, the Default task will be

instructed to start the special Usb2Spi top-level application, which requires a raw data input from the
I/O interface (USB or UART connection to the “DecaRanging” PC application, see [2]).
The start of the Usb2Spi top-level application switches the Control task to run in transparent mode,
called “Data parser” mode, where the Control task will not parse commands and will not attempt to
execute them.
Instead, the Control task will send the SIGNAL and pass the data input directly to the Usb2Spi top-
level application, which will process the incoming traffic from USB and UART inputs. This is illustrated
in Figure 6 below. For more information about Usb2Spi top-level application see 3.2.

Figure 6: Control Task (in data mode) sends signal to the Usb2Spi application

Command parser

Data parser

 EVENT

NodeTask

Usb2SpiTask

TcfmTask

TcwmTask

TagTask

TrilatTask

Setup usb2spi

Run
usb2spi
process

Command parser

Data parser SIGNAL

DW3000-TWR-demo

© Decawave 2019 Qorvo 2021 SW-DW3000-TWR-demo-1.2 Page 11

2.3.1 Command mode of Control task

The command mode of Control task includes parsing and execution of several different input
command sets. In this section a more advanced description of this mode will be given.

On reception of a valid command by the Control task, the command is processed and the
corresponding reply is sent for output. The Flush task is in charge of sending the output to the
USB/UART interfaces.
The twr demo can parse three different types of commands:
- anytime commands
- state changing commands
- run-time parameters access commands.

Some of these commands constitute a “generic commands” set, and some other commands

constitute a set of commands controlling the Node top-level application.

The generic commands set described in subsections 2.3.1.1, 2.3.1.2, 2.3.1.3, and the Node’s
application set in subsections 2.3.2 below.

Generic commands set has the general format of <Command>[<SPACE><Val>]<CR>

Where <Command> is the command string from the Table 1, Table 2 and Table 3 below,
[<SPACE><Val>] is optional and <CR> is representing the carriage return (can be any of <CR>,
<LF>, <CRLF>, <LFCR>).

2.3.1.1 Anytime commands

The anytime commands listed in Table 1 can be executed anytime except during operation of the

USPI mode , i.e. when binary data parser is running (see Figure 6. The only exception is a STOP

command, which can be executed in all modes.

Table 1: Anytime commands

Command Definition of functionality

STAT Reports the status. Gives a dump of software version info, configuration
values and the current operation mode (NODE, TCFM, TCWM or STOP).

HELP or “HELP <CMD>” Outputs a list of all known commands available in the current mode of
operation or shows the help of the particular command <CMD>.
Equivalent shortcut is “?”.

STOP Stops running any of top-level applications and places the node to the
STOP mode, where only core tasks are running.

SAVE Stores the bssConfig configuration to the FConfig.

Node-application specific
commands set *

See section 2.3.2 below

(*) - subject to change

2.3.1.2 Commands to change mode of operation

The commands to change mode of operation can be executed only after the STOP command
(otherwise the command parser will output the string “error incompatible mode”). They are used to
send an appropriate event request to the Default task to start a particular top-level application.

DW3000-TWR-demo

© Decawave 2019 Qorvo 2021 SW-DW3000-TWR-demo-1.2 Page 12

On reception of a command to change the mode the Control task sets an event for to the
xStartTaskEvent which is then received by the Default task, as described on Figure 5 above. For a

complete list of commands to change the mode of operation see Table 2 below.

Table 2: Commands to change mode of operation

Command Definition of functionality

NODE Run the Node top-level application.

TAG Run the Tag top-level application.

TRILAT Run the Trilateration top-level application example.

LISTENER <PARM> Run the Listener top-level application <PARM> is the optional set of
parameters to be paseed to the Listener

TCWM Run the Test Continuous Wave transmission Mode top-level application.

TCFM <PARM> Run the Test Continuous Frame transmission Mode top-level application.
<PARM> is the optional set of parameters to be paseed to the TCFM.

USPI Run the USB-to-2SPI conversion top-level application.

The USB-to-SPI conversion mode gives an external host/PC direct access
to the SPI bus of DW3000. Can be used for testing of DW3000 IC and its
RF performance.

2.3.1.3 Commands to change run-time parameters

The commands to change run-time parameters, listed in Table 3, can be executed only when a top-
level application is not running, i.e. the STOP command is needed to place the Juniper into its STOP
mode before accessing these parameters. All parameters are a part of the bssConfig, and all
changes will be applied at the start of a top-level application. The SAVE command can be used to
store changed parameters to the FConfig that they also will be used after the reboot of the device.

Table 3: Commands to change run-time parameters

Command App Definition of functionality

ADDR <val> Node Set the node’s short address to decimal <val>. The default is 1
(which is decimal for node’s address 0x0001).

PANID <val> Node Set the node’s PAN ID to decimal <val>. The default is 57034
(which is decimal for 0xDECA).

NUMSLOT <val> Node Set the number of slots been used in the superframe to decimal
<val>. The default is 20. This specifies the maximum number of tags
in the superframe. This value should be equal or bigger than
MAX_KNOWN_TAG_LIST_SIZE, see 3.1.1.

SLOTPER <val> Node Set the slot’s window period to decimal <val>, milliseconds (ms). The
5 ms slot window is used in the system.

DW3000-TWR-demo

© Decawave 2019 Qorvo 2021 SW-DW3000-TWR-demo-1.2 Page 13

Command App Definition of functionality

SFPER <val> Node Set the superframe period to decimal <val>, milliseconds (ms).
Superframe period shall be at least of time duration to fit all slots, i.e.
SFPER ≥ NUMSLOT*SLOTPER. The suerpframe period defines the
maximum ranging rate of tags in the system. The default is 100 ms
means that all tags in the system can range to the node 10 times a
second each.

REPLYDEL <val> Node Set the Reply delay to <val>, microseconds (µs). This value is a
parameter in the Ranging Config message that is sent to each
discovered tag to begin ranging. This value is both tag and node
hardware dependent. The tags have their
MIN_RESPONSE_CAPABILITY_US, and if REPLYDEL is less than

tag supports, tag will not start ranging to the node.

P2FDEL <val> Node Set the Poll-to-Final delay to <val>, microseconds (µs). Default is
1500 µs. This value is a parameter in the Ranging Config message
that is sent to each discovered tag to begin ranging. This value is
mostly tag hardware dependent. The tags have their
MIN_POLL_TX_FINAL_TX_CAPABILITY_US, and if P2FDEL is less

than tag supports, tag will not start ranging to the node.

RCDEL Node

Tag

The <val> is the delay in microseconds (µs) between tag’s
completion of sending a Blink and start of tag’s reception of Ranging
Config response from the node. Both nodes and tag have this
configuration parameter and it should be the same for all the devices
in the system. Default is 1000 µs.

UART <val> all “0” (default) - Disables the UART. The node will not output data to
UART.

“1” - Enables the UART. This enables the node to use both USB and
UART, which means the top-level application will use both output. In
this case the location report rate in Node top-level application will be
limited, since UART speed is limited to 115200 b/s. It is
recommended to switch off JSON TWR output to maintain maximum
location output rate (set PCREP to 2 or 3).

F_NUM <val> Tag Tag top-level application Ranging phase configuration: Range Fails
number after which tag top-level application will return back to
Discovery phase.

ANTTXA <val> all Sets the TX antenna delay value to specified val (INT16) decimal
value, in device time units of 1/499.2e-6/128 (approx. 15.65 ps).
Applied to the TX antenna delay configuration of the DW3000 chip.

ANTRXA <val> all Sets the RX antenna delay value to specified val (INT16) decimal
value, in device time units of 1/499.2e-6/128 (approx. 15.65 ps).
Applied to the RX antenna delay configuration of the DW3000 chip.

PDOFF <val> Node Phase difference mean value, externally collected and send back to
the node on phase calibration process. The known tag, placed in the
known coordinates is used to find the PDoA offset.

RNGOFF <val> Node Distance mean value, externally collected and send back to the node
after on range calibration process. The known tag, placed in the
known coordinates is used to find the range offset.

DW3000-TWR-demo

© Decawave 2019 Qorvo 2021 SW-DW3000-TWR-demo-1.2 Page 14

Command App Definition of functionality

PCREP <val> Node

Tag

Select granularity of report used for output. By default “1” (JSON).
Used to replace JSON format in report with simple short one to
achieve higher locations throughput over UART. If “0” then reports
switched off. <val> can be “0”, “1”, “2”.

RESTORE all Restore node’s configuration to default. This command copies the
defaultConfig section of NVM to the bssConfig. SAVE command
shall be used thereafter if user wants to save the FConfig section.

UWBCFG <parm> all This can be used to modify the default UWB configuration of
DW3000. The set of <PARM> equivalent to the order of the output.
Should be used only when one understands of the consequence of
the opetation.: see code for full details.

XTALTRIM <val> all Sets XTAL trim value to adjust the crystal frequency. The value
should be in the region 0x00 and 0x7F, with the default parameter
set to 0x2E.

POWER <parm> all This command sets the default transmit power of the chip. <parm>
represents the <0xPWR>, <0xPGDLY> <0xPGCNT>.

Should be read in conjunction with the User Manual of the DW chip.

STSKEYIV <key>
<iv> <type>

all Configures the STS KEY and IV to be used when sending/receiving
packets when running top-level applications. <key> this is the 128-bit
STS KEY value (0xaaaabbbbccccdddd); <iv> this is the 128-bit STS
IV value (0x1111222233334444); <type> can be 0 – the STS will
update (increment the IV counter for each TX/RX) or 1 the STS will
be static – same IV used for each TX/RX. The default parameters
sets to a well-defined STS key/data pair and static mode.

LSTAT
Listener Shows the statistics numbers of received UWB packets and their

quality. Should be read in conjunction with the User Manual of the
DW chip.

2.3.2 Controlling of the embedded applications over a PC GUI app

When any of the top-level applications is running, it can accept its own specific set of commands to
utilize the control of its specific functionality. For example, the Node application can be controlled by
PDoA GUI PC app and has its own set of commands and output responses (i.e. interface),
appropriate for the Node application.
Below is the specification of the interface in between Node and PDoA GUI PC application.

The rest of the applications do not have their own, specific input commands from the GUI’s and can
only be started/stopped to produce the output.

2.3.2.1 The PC to the Node-application specific commands

When Node top-level application is running, it can be controlled externally by USB/UART and accepting
specific commands, which belongs specifically to the Node top-level application.
The PC to the Node communication commands, listed in Table 4, can be executed at any time and will
have immediate effect to the Node’s top-level application, if it is running. The node is replying onto that
commands, using JSON formatted output, wrapped to TLV format, see 2.3.2.2.
For autonomous mode, e.g. when Node application is not connected to the PC GUI application, but
working standalone, (e.g. when installed on a mobile robot), the known tags list (KList) can be saved to

DW3000-TWR-demo

© Decawave 2019 Qorvo 2021 SW-DW3000-TWR-demo-1.2 Page 15

the FConfig NVM segment, using the SAVE command for this.

Table 4: The PC to the Node top-level application commands

Command Definition of functionality

DECA$ Node will reply with Info JSON object with version string, see Table 5

GETDLIST Node will reply with KList JSON array of discovered (harvested) tags list, see

Table 5

GETKLIST Node will reply with DList JSON array of known tags list, see Table 5.

ADDTAG <addr64>
<addr16> <mFast>
<mSlow> <mMode>

Formatted input string with spaces as separator.

Instructs the Node to add a tag with addr64 to known tags list (KList), using
addr16, mFast, mSlow and mMode as parameters for that tag.

<addr64> is address of the tag, hexadecimal, must be 16 characters;

<addr16> is request to assign this short address of the tag, hexadecimal; This
address may be automatically changed by the node, as KList is protected from
adding of identical addresses in it.

<mFast> is hexadecimal value which will be used by the tag if it considered it is
moving. This is in number of superframes. For example, 1 means that the Tag,
when its moving, will range to the Node every superframe, and “0A” (decimal
10) means tag will range to the node every 10-th superframe.

<mSlow> is hexadecimal value which will be used by the tag if it considered it is
not moving, i.e. stationary. This value usually specified to a big number, 64
hexadecimal means tag will range to the node every 100 superframes, see
Example below.

<mMode> is a hexadecimal bitfield parameter to pass to the tag. Bit 0 indicates
tag shall use IMU to detect if it stationary or moving. Bits 1-15 are not used.

Example:

“ADDTAG 001122334455667788 1000 2 64 1” – this instructs the node to add
the tag to the KList with long address “0x001122334455667788”, try to assign
to this tag a new short address “0x1000”, configure tag to use IMU, the tag
should range to the node every 2 superframes if it is moving (giving superframe
is 100 ms, this means tag will range 5 times a second), and when tag is
stationary, range every 100 superframes, i.e. every 10 seconds.

On success the command will return a “TagAdded” JSON object with actual

parameters, assigned to the tag, see Table 5 below. It is mandatory to wait for

“TagAdded” object or request a full known tags list from the Node to confirm the
tag has been added. The external application must use the short address from
“TagAdded” or “KList” responses, as KList is protected from adding of identical
addresses to it and node will assign unique short address for the tag in case it
was erroneous instructed to add a tag with short address, which belongs to
other tag.

DW3000-TWR-demo

© Decawave 2019 Qorvo 2021 SW-DW3000-TWR-demo-1.2 Page 16

Command Definition of functionality

DELTAG <addr64> Formatted input string. This will delete the tag of with <addr64> from KList.

<addr64> is address of the tag, hexadecimal, must be 16 characters;

The <addr64> may contain a short address of the tag, followed 12 zeroes. In
this case the tag also will be correctly deleted by its short address.

Example:

Tag long 64-bit address is 0x001122334455667788. And assigned short
address is 0x1234

Following commands will identically correctly delete the tag from the KList:

“DELTAG 0000000000001234” or “DELTAG 001122334455667788”.

D2K Automatically adds all discovered tags to known tag list. This is a useful
command for Terminal only, as it connects to all tags around.

DW3000-TWR-demo

© Decawave 2019 Qorvo 2021 SW-DW3000-TWR-demo-1.2 Page 17

2.3.2.2 The Node top-level application output to PC

The Node top-level application outputs to the PC using JSON formatted output. The JSON object is
encapsulated in TLV format (Type-Length-Value) to easier the implementation of parser on the PC
side. The reader may find a description of JSON format in the RFC 4627,
[https://tools.ietf.org/html/rfc4627].
<TYPE><LENGTH><VALUE>, where <TYPE> is “JS”, <LENGTH> is 4-byte hexadecimal length of

<VALUE> field, which is a JSON object, see Table 5 below.

Table 5: Node top-level application JSON outputs

Action JSON
object

Type Format of JSON object with TLV wrapper

Reply to the
“DECA$”

Info Info
object

JSxxxx{"Info": <info_object>}
The device reports the information about it.
Example:

JS0088{"Info":{
"Device":" Node",
"Version":"1.0.0",
"Build":"Sep 18 2017 14:06:47",
"Driver":"DW3000 Device Driver Version 04.00.07"}}

Node
application
reports a
new tag has
been
discovered

NewTag String JSxxxx{"NewTag": <string>}
Tag’s 64 bits hex address is in the <string>.
Example:
JS001D{"NewTag":"10205F4910002E5C"}

Reply to the
“ADDTAG”

TagAdded Tag
object

JSxxxx{"TagAdded": <tag_obj>}

The <tag_obj> is JSON object of following fields:

{"slot":<int>,"a64":<string>,"a16":<string>,"F":<int>,"S":<int>,"M":<i
nt>}”

"slot" - is the assigned slot (controlled by the node);
"a64" - is the long address of the tag, hex;
"a16" - is the short address, assigned to the tag, hex;
"F" - is the how often in numbers of SuperFrames the tag will
range if it is considered it is moving, dec;
"S" - is the how often in numbers of SuperFrames the tag will
range to the Node if it is considered it is not moving, dec;
"M" - tag operational mode bitmask, bit 0 to indicate Tag shall use
IMU and decide whether it is moving or stationary and use “F” and
“S” fileds described above. If “M” defined to 0, then the tag will use
“F” field for its continuously ranging to the node.

Reply to the
“GETDLIST”

DList Array
of
strings

JSxxxx{"DList": [<string>,<string>,<string>,…]}
Tag’s 64 bits hex addresses are in strings.
Example:
JS001F{"DList":["10205F4910002E5C"]}

https://tools.ietf.org/html/rfc4627

DW3000-TWR-demo

© Decawave 2019 Qorvo 2021 SW-DW3000-TWR-demo-1.2 Page 18

Action JSON
object

Type Format of JSON object with TLV wrapper

Reply to the
“GETKLIST”

KList Array
of Tag
objects

JSxxxx{"KList": [<tag_obj>,<tag_obj>,…]}

Example:

JS005D{"KList":[
{
"slot":1,
"a64":"10205F4910002E5C",
"a16":"012A",
"F":1,
"S":64,
"M":1
}
]}

Reply to the
“DELTAG”

TagDeleted String JSxxxx{"TagDeleted": <string>}

<string> is the long address of the tag, hex;

Example reply on DELTAG command:

JS0022{"TagDeleted": "10205f4910002e5c"}

When the
Node
application is
running, it
can report to
the PC the
“TWR” object
anytime

TWR Node’s
Twr
Object

JSxxxx{"TWR": <twr_obj>}

Where <twr_obj> is:
{"a16":<string>,"R":<int>,"T":<int>,"D":<int>,"P":<int>,“A”:<int>,"O":
<int>,"V":<int>,"X":<int>,"Y":<int>,"Z":<int>}

"a16" - is tag’s short address, hex;
"R" - is the range number, dec;
"T" - is the time of reception of Final wrt node’s SF start in us, dec;
"D" - is the distance to the tag in centimeters, (float as int), dec
"P" - is the raw PDoA to the tag in degrees, (int), dec
"Xcm" - is the X coordinate of the tag in centimeters, (float as int),
dec
"Ycm" - is the Y coordinate of the tag in centimeters, (float as int),
dec
"O" - is a clock offset of the tag in hundreths of ppm (float as int),
dec
"V" - is a service data wrt to the tag, bitfields, dec:
bit 0 indicates 1 if tag is stationary and 0 if tag is moving;
bit 14 indicates a RNGOFF=0 is used for distance calculation;
bit 15 indicates a PDOFF=0 is used for calculation;
"X" - is the accelerometer X axis data, in milli-G, dec
"Y" - is the accelerometer Y axis data, in milli-G, dec
"Z" - is the accelerometer Z axis data, in milli-G, dec

Example:

JS006A{"TWR": {"a16":"4096","R":53,"T":5126,"D":112,"P":-
161,"Xcm":112,"Ycm":0,"O":336,"V":0,"X":0,"Y":0,"Z":0}}

Diagnostic
object

TWR_DIAG Node’s
Diag
object

JSxxxx{“TWR_DIAG”: <twr_diag_obj>}
Proprietary reads of registers of the DW3000 / used for developing
of some specific algorithms.

DW3000-TWR-demo

© Decawave 2019 Qorvo 2021 SW-DW3000-TWR-demo-1.2 Page 19

2.3.2.3 The Tag top-level application output

The Tag top-level application outputs to the PC using JSON formatted output.

Similarly to the Node, the Tag outputs the JSON TWR object, with a distance from the Tag to the

Node, see Table 5.

2.3.2.4 The Trilat top-level application output

Trilat top-level application has been developed to demonstrate RTLS functionality. The node, upon
receiving at least 3 range measurements from fixed tags performs trilateration to find its position
relative to the fixed tags. The trilateration function has not been optimized for a higher capacity and is
suitable to locate only one mobile Node at a time. Trilat sits on the top of the Node application, which
should be configured to range to at least 3 known Tags with fixed locations (tags for this demo act as
a fixed infrastructure elements and should be configured to supply their fixed position co-ordinates
X,Y,Z).

DW3000-TWR-demo

© Decawave 2019 Qorvo 2021 SW-DW3000-TWR-demo-1.2 Page 20

2.4 Flush task

Any functions, including ISR functions, or RTOS tasks can produce and request to send data to the
non-blocking output (USB and/or UART). In the data sending function port_tx_msg(), the data is
copied to the intermediate Report Buffer, which is then flushed by the Flush task. This is illustrated in
the Figure 7 below.
The Flush task is coded as FlushTask() in the task_flash.c source code file.
The Report buffer is a circular buffer, which is statically allocated in the usb_uart_tx.c as
txHandle.Report. The port_tx_msg() function is copying data to the txHandle.Report.buf and then sets
the app.flushTask.Signal to the Flush task to start immediate transmitting of data via USB/UART.
The Flush task is emptying the Report buffer onto the USB and the UART. The Report buffer is a
statically allocated area of USB_REPORT_BUFSIZE. The size of Report buffer is sufficient that any
task/function can send a chunk of data for background output without delaying its throughput, even
during an ISR, see Figure 7 below.

Figure 7: Output data using shared Report buffer

Discovery phase
Listen for a Tags in a range and
report unknown tags ID to the

output

Ranging phase
Perform TWR to known tags; report

Range results to the output

Start a TWR timer for slots
Port_tx_msg

Process USB2SPI
protocol commands

SPI to DW3000

Run Test Continuous
Frame mode

SPI to DW3000

Run Test Continuous
Wave mode

SPI to DW3000
TWR timer for slots

From any functions to debug,
including ISR level functions

Command parser

Data parser

REPORT
BUFFER

SPI to DW3000

FlushTask is emptying the
Report buffer independently

DW3000-TWR-demo

© Decawave 2019 Qorvo 2021 SW-DW3000-TWR-demo-1.2 Page 21

2.5 RTOS extensions used in the application

For performance reason in the Node application only RTOS mailbox is used to pass data between
rxTask and calckTask. The queues and mailboxes are not used to pass the data from ISR to tasks
and a circular buffer alternative is widely used instead.
For locking and signalling, the following mechanisms are used: mutexes, events and signals. Mutexes
are used to protect task execution from being killed in the Default task while they still in the running
state.
The EventGroup mechanism, is used to send relatively slow events between tasks. E.g. this method
is used to instruct the Default task to start a particular top-level application.
As a fast and simple alternative to EventGroup, the fast task notification mechanism can also be
used.
In the CMSIS-RTOS this defined as signals. The signal is delivering a simple message to the specific
task. This mechanism is faster that EventGroup and in the application is used to organize
interconnection from ISR level functions to a RTOS-based tasks. For more information please refer to
the FreeRTOS documentation [www.freertos.org].
For the purposes of unification, all tasks (top-level applications and sub-levels), which are capable to
receive signals are defined as task_signal_t structures in the global app structure. Example of the
code is below.

/* Application tasks handles & correspondeing signals structure */

typedef struct

{

 osThreadId Handle; /* Task’s handler */

 osMutexId MutexId; /* Task’s mutex */

 int32_t Signal; /* Task’s signal */

}task_signal_t;

In the code, in the app structure, task handlers and signals are defined as follows:

//defaultTask is always running and is not accepting signal

task_signal_t ctrlTask; /* usb/uart RX: Control task */

task_signal_t flushTask; /* usb/uart TX: Flush task */

/* app task for TWR */

task_signal_t rxTask; /* Tag/Node */

task_signal_t calcTask; /* Node only */

/* tasks for special top-level applications */

task_signal_t usb2spiTask; /* USB2SPI top-level application */

task_signal_t tcfmTask; /* TCFM top-level application */

task_signal_t tcwmTask; /* TCWM top-level application */

http://www.freertos.org/

DW3000-TWR-demo

© Decawave 2019 Qorvo 2021 SW-DW3000-TWR-demo-1.2 Page 22

3 IN DEEP ABOUT TOP-LEVEL APPLICATIONS

There are a number of top-level applications, listed in the Table 6, which can run in the dedicated

mode on the Juniper platform. Every top-level application consists from a task (or a number of tasks)
and a set of non RTOS based functions to implement an application’s functionality.

Table 6: Top-level applications and corresponded commands

Top-level
application

Corresponded command Description

Node, section 3.1 NODE
Two-way ranging slotted Node top-level
application (PDoA / Non-PDoA)

Tag, section 3.2 TAG
Two-way ranging slotted Tag top-level
application

Trilat, TRILAT
Example of trilateration engine, running on
above the Node top-level application

Usb2Spi, section 3.3 USPI
USB (or UART) to SPI converter. Used for
testing.

TCWM, section 3.4 TCWM
Test Continuous Wave transmission. Used
for testing

TCFM, section 3.4 TCFM
Test Continuous Frame transmission. Used
for testing.

Listener, section 3.6 LISTENER Starts Listener application.

3.1 Node top-level application

If configured in the app.pConfig->s.default_event parameter, the juniper platform will start and

execute the two-way-ranging Node top-level application.

The Node supports ranging to multiple tags. To prevent interference between these tags, a Time-
Division Multiple Access method (TDMA) is employed to separate the tags’ ranging exchanges into
individual “slots” within a repeating "superframe" structure, specified by the node, see 3.1.3.
Initially each tag sends only blink messages to advertise itself and be discovered by the node. For the
tag, this is called the Discovery phase. After sending the blink, the tag awaits a Ranging Config response
from the node, and upon its successful reception, the tag configures itself, as instructed by the Ranging
Config response, to range to the node in a designated slot.

The node only ranges to tags that appear in its KList, which is a list of known tag IDs (and their
configuration parameters) that are authorised to communicate to the node.

When the node receives a blink from a tag which is not in the KList, it reports this via the “newTag”
report, sent over the USB/UART (e.g. to the to the connected PC application). The new tag may be
added to the KList individually using the “ADDTAG” command or “D2K” command, which will add all
discovered tags and assign to them short 16-bit addresses automatically.

When a blink is received from a tag that is in the KList, the node immediately responds with a Ranging
Config response, assigning a slot to the tag for its future TWR exchanges. The SAVE command which
saves the node configuration also saves the current KList. The “DELTAG” command, can be used to

remove an individual tag from the KList. See Table 5 for more details.

DW3000-TWR-demo

© Decawave 2019 Qorvo 2021 SW-DW3000-TWR-demo-1.2 Page 23

As noted above, after sending a blink, receiving of a Ranging Config and been configured, the tag is
going to the Ranging phase and starts periodic ranging exchanges to the node in its dedicated time
slot. Every ranging exchange the tag starts with sending of a Poll message (addressed to the node
address, specified in the Ranging Config message), awaits of a Response message from the node, and
upon its successful reception, replies with a Final message to complete the ranging sequence.

On successful reception of the Final message, the node reads data from DW3000, calculates distance
and phase difference (on a Non-PDoA variant of DW3000 the PDoA is zero), and reports result to the
output. Figure 8 below shows a high-level view to the Node application flow and more detailed
description is giving in the section 3.1.2.

Figure 8: Node top-level application

Restart Rx and wait for reception of Blink, Poll or
Final

Is the tag in
the Klist?

Start Node top-level application

Node top-level application

YES

NO

Is this a BLINK
message?

Add addr64 to the DList

Report to the output that a new
tag with addr64 has been

discovered

Setup and send to
the tag a Ranging
Config response

Setup and send to the
tag a Reply

response if cipher
timestamp is valid.

In the tx_callback(),
setup delayed RX.

Is the tag in the
Dlist?

YES

NO

Validate the
cipher

timestamp.
Decrypt Final

data and
calculate TOF
and report it

to output

Poll

BlinkFinal

YES

NO

Is a tag the
one we are
ranging to?

YES

NO

DW3000-TWR-demo

© Decawave 2019 Qorvo 2021 SW-DW3000-TWR-demo-1.2 Page 24

3.1.1 Concept of Discovered and Known tags lists

Before the node starts ranging to a tag, the tag needs to be added to a list specifying tags to which
the node is allowed to range with. This list of tags is called “known tags list” or KList.
Every record in the KList has all necessary information about each tag including: its 64-bit address,
assigned 16-bit (short) address, assigned slot number, etc. This information is supplied to the tag in
the Ranging Config reply by the node following the reception of the tag’s blink message. The KList
can be saved and it will then be available for use during autonomous working mode of the Node (i.e.
after start-up).

The user-commands “ADDTAG” and “DELTAG”, described in Table 5, can be used to add/remove

individual tag information to/from the KList. The “GETKLIST” command can be used to retrieve the
KList information, e.g. by the PC GUI application so that it can update the list of known tags.

When the node receives a blink from a tag that is not present in the KList, the tag’s 64-bit address is
stored in a temporary “discovered” tags list, called DList. The “GETDLIST” command is used to
periodically retrieve the discovered tags information, e.g. by the PC GUI application, so that it can
update its list of tags in the system.
Note: The “GETDLIST” command also clears the discovered tags list in the node.
The maximum sizes for KList and DList can be found in the tag_list.h header file:
#define MAX_KNOWN_TAG_LIST_SIZE (20)
#define MAX_DISCOVERED_TAG_LIST_SIZE (20)

3.1.2 Discovery and ranging to tags

There is a set of RTOS tasks (threads) to implement the node’s functionality above. On reception of
the Ev_Node_Task event, the Default task executes the node_helper() function, which configures all
the HW to operate for the Node top-level application, i.e. wakes up and configures the DW3000 IC to
run with configured UWB parameters and starts following sub-tasks: RxTask and CalckTask.

Figure 9: Tasks used in the node application

Please note, the core tasks, i.e. Control, for input handling, and Flush, for output handling, are always
running, see sections: 1.1.2, 2.3.1, 2.4.
On reception of a UWB blink message in the RxTask it checks whether the sender is in the KList. If it
is, the RxTask sends to the tag the appropriate Ranging Config response, which describes to the tag
its personal run-time parameters, for it to use during the Ranging phase.
If the sender is not in the KList and is not yet in the DList, the RxTask reports that a new tag has been

DW3000 IRQ:
rx_callback()

IRQ level

Get data from circ_buf

twr_responder_algorithm_rx()

Final
received

?

Send mail of

rx_mail_t type

End

NO

YES

Get mail from mail queue

Calculate
Distance and PDoA

Send results to the
Report.buf

signal_to_pc_twr()

MAIL

Output
Report.buf
to USB and

UART

[SIGNAL] Maintain
KList

DW3000-TWR-demo

© Decawave 2019 Qorvo 2021 SW-DW3000-TWR-demo-1.2 Page 25

discovered in the range (see the “NewTag” object in Table 5) and stores the tag’s 64-bit address in

the discovered tags list DList, that it will not be reported as “NewTag” to the output anymore, but only

if the control application will request for a “GETDLIST”, see Table 5.

Once a tag has been sent a Ranging Config response, it is expected that it will start ranging to the
node, i.e. it will periodically send a Poll message to initiate the ranging exchange in its configured time
slot.
On reception of Poll message from a known tag, the node begins range to that particular tag, also
node sends back to the tag a correction value in microseconds, of how far is the tag from its assigned
slot, that the tag can correct its internal processes and will range next time closer to the assigned slot,
see 3.1.3 and 5.5.
On reception of Final message from the tag, the Node’s rxTask sends the mail using the mailbox
mechanism to the lower priority calcTask, which will calculate and report the estimated distance, and
X-Y coordinates of the tag with respect to the Node.

3.1.3 The superframe, the wakeup timers and the tag’s slot correction

To ensure non-overlapping ranging exchanges for multiple tags, the node uses Time-Division Multiple
Access method (TDMA), to assign to every tag its own dedicated slot, of T_Slot duration, within node’s
superframe period, see Figure 10.

Figure 10: Superframe structure and ranging exchange time profile

On the picture above, the R represents the RMARKER, which is the event nominated by the IEEE

802.15.4 UWB PHY standard for message time-stamping. The time the first symbol of the PHR
launches from the antenna (defined as the RMARKER) is the event nominated as the transmit time-
stamp, see 5.1, 5.2, 5.3, [1].

The Poll2Final configuration value defined the rough time between transmissions of RMARKERS for
Poll and Final messages from the tag. Rx_delay is the time between tag’s end transmission of the Poll

and its start of reception of a Response from a Node, see P2FDEL and RCDEL parameters in Table 3

above.

Node’s Superframe (n)

Slot 0 Slot 1 Slot 2 Slot 3 Slot 4 Slot 5 Slot N Slot 0

Superframe (n+1)

Slot 1

TWR T0 to
the Node

Tag0’s Superframe

TX
Poll

Node TX
Resp-
onse

TX
Final

T_Slot

Poll2Final

Guard
Time

TWR T1 to
the Node

T_Slot

Guard
Time

...

R R

 rx delay

DW3000-TWR-demo

© Decawave 2019 Qorvo 2021 SW-DW3000-TWR-demo-1.2 Page 26

Note, the slot number zero is reserved to be used for future enhancement of the system, for example
Node can beacon in this slot and Tag can listen for the beacon and be instructed to transmit only on
allowed time.

The node specifies the superframe period in the Ranging Config message which the tag saves in its
framePeriod_ms variable.The node counts its local superframe period using a RTC wakeup timer,

configured to expire every pSfConfig->sfPeriod_ms. On expiry, the timer saves the clock value

to the gRtcSFrameZeroCnt, which indicates the start of Node’s internal superframe and is used in

the slot correction process, as described below.

The RTC in the node and the RTC in the tag have a small drift with respect to each other, so to
maintain the tag ranging in its assigned slot, every time the node receives a Poll from tag, it checks its
receive time against the expected receive time and includes in the ranging Response message a
correction factor, the slotCorr_us, which indicates the difference between the start of tag’s

dedicated slot with respect to node’s current start of superframe – gRtcSFrameZeroCnt and the

actual arrival time of the Poll. Using this slotCorr_us information, the tag adjusts its wakeup timer

for the next period to send its Poll in the assigned slot. For more details about slot correction method
see section 5.5.

DW3000-TWR-demo

© Decawave 2019 Qorvo 2021 SW-DW3000-TWR-demo-1.2 Page 27

3.2 Tag top-level application

Once tag top-level application is started, it will setup and execute the two-way-ranging Tag application
which consists of Discovery and Ranging phases.
The system may include more than one tag ranging to the same PDoA node. To prevent interference
between tags, a Time-Division Multiple Access method (TDMA) is employed to separate the tags
ranging exchanges into individual “slots” within a repeating "superframe" structure specified by the
PDoA node, see 3.1.3.
Initially the tag sends blink messages to advertise itself and be discovered by the PDoA node. This is
called the Discovery phase. After sending the blink, the tag awaits the response from the PDoA node
and upon successful reception it configures itself as instructed by the PDoA node. The tag application
supports ranging to a single PDoA node only.

For each ranging exchange, the tag sends a Poll message (addressed to the PDoA node address,
specified in the Ranging Config message), and awaits a Response message from the PDoA node, and
upon its successful reception, sends a Final message to complete the ranging exchange. After
completing the ranging exchange (or if it fails to complete because of error or timeout), the tag will put
the DW3000 into DEEPSLEEP until a configured WakeUp timer period elapses, after which it will wake
the DW3000 and the flow will be repeated again, to complete another ranging exchange.

Figure 11: Tag top-level application

There is a set of threads to implement the Tag’s functionality above. On reception of the
Ev_Tag_Task event, the Default core task executes the tag_helper() function, which configures all the
HW to operate for the Tag top-level application, i.e. initially wakes up of the DW3000, then configures
it for running with configured UWB parameters and starts sub-tasks: BlinkTask, PollTask, RxTask.

Stop Discovery phase.
Setup Ranging phase.

Send Blink

Ranginig Config
message
received?

Setup Discovery phase

Send Poll

Response from
the node
received?

Inc faultyRangesCnt

faultyRangesCnt >

faultyRanges?

Send EventGroup event to restart
the whole TAG user application

Send Final

YES

NO

NO

YES

Tag top-level application

YES

NO

DW3000-TWR-demo

© Decawave 2019 Qorvo 2021 SW-DW3000-TWR-demo-1.2 Page 28

3.2.1 The Discovery phase

Once the BlinkTask has started, the tag starts sending periodic blink messages and awaits a
response in the RxTask, see below. This is called the Discovery phase, and continues indefinitely,
until a Ranging Config message is received from the node.

 Figure 12: Tag’s Discovery phase: Rx Thread

The Blink message is an IEEE specified 12-byte message with long addressing mode, see 5.4.1. The
Ranging Config message uses long-short addressing and contains configuration options: the version
of Ranging Config, Tag’s and Node’s short addresses, PDoA system PanID, timings for range
exchange, etc.
On reception of the Range Config response, the RxTask stops the low resolution Blink Timer and sets
a higher precision RTC wakeup timer to expire and Signal to the PollTask to attempt a first ranging.
The Discovery phase has finished at this point and tag application goes to the Ranging phase.

3.2.2 The Ranging phase

The RTC wakeup timer, first time configured at the end of Discovery phase, expires when the tag is
due to send the Poll message. The Wakeup timer is reloaded with the periodic value, corresponded to
the super frame duration value from Ranging Config message. It will also be corrected by the PDoA
node in every response message. The PollTask receives the signal from Wakeup timer and sends the

Send blink

Expire

[SIGNAL]

initiator_send_blink()

WakeUp DW1000

APP level

Get data from circ_buf

DW1000 IRQ:

rx_callback()

twr_initiator_algorithm_rx()

Compatible
Range

Configuration
message?

Stop Low-Resolution Blink Timer
Setup high-resoluution RTC timer

end

[SIGNAL]

IRQ level

APP level

NO

YES

DW3000-TWR-demo

© Decawave 2019 Qorvo 2021 SW-DW3000-TWR-demo-1.2 Page 29

Poll to the PDoA node, initiating a Ranging sequence, see Figure 13. On reception of UWB packet, the

dwt_isr() rx_callback() sends the SIGNAL to the rxTask, which is then responsible for the setup of the

Final reply message to the node, see Figure 14.

Otherwise Wake up timer sends SIGNALs to the PollTask as configured in the fast location rate
parameter. Outside of the ranging exchange, the DW3000 is placed into its DEEPSLEEP Mode, and
the MCU can be in a low-power mode if other tasks are not running, this is under control of the Idle
task.

Get data from circ_buf

DW1000 IRQ:

rx_callback()

twr_initiator_algorithm_rx()

Response from
the node?

Send Final message
Correct RTC Wakeup Timer

End

[SIGNAL]IRQ level

APP level

NO

YES

Inc faultyRangesCnt

Figure 14: Tag’s Ranging phase: Rx Thread

[SIGNAL]

initiator_send_poll()

APP level

RTC Wakeup Timer

IRQ level

Wakeup DW1000

Send Poll

Figure 13: Tag's Ranging phase: Poll Thread

DW3000-TWR-demo

© Decawave 2019 Qorvo 2021 SW-DW3000-TWR-demo-1.2 Page 30

3.3 Usb2Spi top-level application

When the Control task receives the command “USPI”, see Table 2, it sets the Ev_Usb2Spi_Task to

the xStartTaskEvent. The Default task consumes the event, safely ends all running tasks and starts
Usb2Spi top-level application.
Once Usb2Spi top-level application has started, the Control task is switched to the “Data parser”
mode, see 2.3, where it passes the whole incoming USB/UART stream into the Usb2Spi task, which
has the implementation of the Usb2Spi protocol to control the DW3000 from an external application.

This illustrated on the Figure 15 below.

Figure 15: Usb2Spi top-level application

3.4 TCWM top-level applications

This task configure the DW3000, to run in the Test Continuous Wave Mode and awaiting to be
stopped from Control task. It is an interface to the corresponding bare-metal production test functions,
located in the tcwm.c file. This command can be used to check the appropriate reaction of the unit to
the XTALTRIM command.

Wait signal

USB_RX_IRQ:

CDC_Receive_FS()

Usb_uart_rx()

Command mode
or Data mode?

Command parser

[SIGNAL to Ctrl]
IRQ level

APP level

Data

Command

[Signal to Usb2Spi]

End

Wait signal

Usb_process_run()

Need to reply to
the PC?

port_tx()
Add reply to the

Report.Buf

NO

YES

End

APP level

[Signal]

Set EventGroup event

Ev_Stop_All.

This will be receiver by
Default task and will stop
all top-level applications

is “STOP” in Data
mode received?

NO

YES

DW3000-TWR-demo

© Decawave 2019 Qorvo 2021 SW-DW3000-TWR-demo-1.2 Page 31

3.5 TCFM top-level applications

This task configure the DW3000, to run in the Test Continuous Frame Mode.This is an interface to the
corresponding bare-metal production test functions, located in files tcfm.c respectively.
TCFM command can accept list of parameters <PARM>.

The format of the command is as follow:

Tcfm <NUM_OF_TX> <PERIOD_MS> <LENGTH_OF_THE_PACKET>

Where
<NUM_OF_TX> - number of packets to be transmitted;
<PERIOD_MS> - time in milliseconds from start of transmission of the packet to start of transmission
of the sequential packet.
<LENGTH_OF_THE_PACKET> - length of packet in bytes <5> to <127> to be transmitted.

Please note, if the total duration of the packet would be longer, than the period, then packets would
be transmitted back-to back.

The command with <PERIOD_MS> set to 1 (i.e. 1ms) is widely used for the certification purpose
when require to measure the Transmit power level of the tested unit.

3.6 Listener top-level application

The Listener application will keep putting the DW3000 into receive mode and will report any
received data, to run the Listener application, “listener” command is used from IDLE mode.
Listener can accept the specific <PARAM>, which will specify its operational mode.

“listener 0” will start listener in “prefer data” mode. In this mode listener will attempt to receive and
output all the received data. Depending on the UWB air load, the incoming data traffic can be faster
that the output capability (USB), in that case some data will be dropped and not displayed over the
USB backhaul.

“listener 1” (default) starts listener in “prefer speed” mode. In this mode the output of the data is
limited to the max amount that can be achieved and still receive any UWB frames once per 1ms. In
this mode only the first 5 bytes of the UWB message will be sent over the USB backhaul.

3.7 Low power mode in Juniper applications

The power-save feature is the Top-level application specific.

The Node application does not use a low power mode for DW3000 when it is not actively ranging.
This is because the system is currently designed to keep the receiver on all the time to allow for the
discovery of new tags. It is possible to modify the Node application to include power save features
and put DW3000 to lower power mode for the periods of time when there no tag ranging is expected.
This is out of the scope of current document.

The Tag application manually places DW3000 to the deep sleep and can place MCU to the low-power
mode. However, the USB block assumes MCU is active all the time, thus this feature is not fully
integrated to the Juniper platform for the MCU.

DW3000-TWR-demo

© Decawave 2019 Qorvo 2021 SW-DW3000-TWR-demo-1.2 Page 32

4 BUILDING AND RUNNING THE CODE

4.1 Building the code

The node application consists of ST CubeMX BSP libraries, the Decawave application and the driver
sources. All of these are provided in the source code zip file.

The project is a Makefile project, which can be build using the ARM GCC compiler. Decawave
currently uses the GNU Tools ARM for Embedded toolchain version 5.4 Q3. The GNU Tools ARM for
Embedded compiler can be found at: https://launchpad.net/gcc-arm-embedded .

Unzip the source of the project and either build it manually by executing the “make” or import the
project into the Eclipse IDE as a Makefile project and build it from there.

The developer may also import projects to the System Workbench for STM32, which is basically a
customized version of Eclipse IDE with pre-installed GCC compiler (version 7.x.x).

4.2 Downloading and running the code

The Juniper hardware has a standard Nucleo (ST-LINK) interface, such it can be used to download
the code to the Juniper HW platform. Decawave is currently using OpenOCD for this and the GNU
Debugger (GDB) from the recommended toolchain for the debugging.

https://launchpad.net/gcc-arm-embedded

DW3000-TWR-demo

© Decawave 2019 Qorvo 2021 SW-DW3000-TWR-demo-1.2 Page 33

5 APPENDIX A

5.1 Two Way Ranging algorithm

The tag (Initiator) periodically initiates a range measurement, while the node (Responder) listens and
responds to the tag and calculates the range. The ranging method uses a set of three messages to
complete two-round trip measurements from which the range is calculated. As messages are sent
and received, the message send and receive times are retrieved from the DW3000. These transmit
and receive timestamps are used to work out a round trip delay and calculate the range, see [1].

In the ranging scheme shown in Figure 16 below, the tag sends a Poll message which is received by
the node. The node replies with a response packets Resp, after which the tag sends the Final
message.

Figure 16: Distance calculation in TWR

Since the node also calculates the phase difference on the reception of the Poll and Final messages,
this means that the tag can be located relative to the node after just a single ranging exchange.

The range and measured phase difference used by the node to work out tag’s X-Y position.

Tag

Node

TX

Tprop Tprop

RX

RX TX
Treply1

Tround1

time

RX

TX

Treply2

Tprop

RMARKER

Tround2

Poll

Poll Resp

Resp Final

Final

Tround1 × Tround2 ̶ Treply1 × Treply2

Tround1 + Tround2 + Treply1 + Treply2

Tprop =

The Final message communicates the tag s Tround and Treply times to
the node, which calculates the range to the tag as follows:

DW3000-TWR-demo

© Decawave 2019 Qorvo 2021 SW-DW3000-TWR-demo-1.2 Page 34

5.2 UWB configuration and TWR timing profile used in the system

The node and tags hardware and software are designed to operate on one UWB configuration. This
includes antenna designs, data rate and message timings, used in the TWR exchange. This specified

in the Table 7 below.

Table 7: UWB mode of operation of system

UWB
Config

Channel Data
Rate

Preamble
Length

STS
Length

STS
Mode

PRF Preamble
Code

SFD PHR
mode

PAC

Value 5 6.81
Mbit/s

64 256 Mode1
SDC

64
MHz

9 DW-8 Standard 8

In the TWR timing profile, see Figure 17, there are two timing parameters, pollTxToFinalTx_us

and delayRx_us. The pollTxToFinalTx_us parameter, specifies the rough time between

RMARKER of Poll and RMARKER of the Final Tx messages for the tag, see 5.1. The delayRx_us

parameter specifies the rough time, the Tag shall activate its receiver after transmission of the Poll in
order to receive the Response from the node, see Figure 17.

Figure 17: TWR timing profile

5.3 Frame time adjustments

Successful ranging relies on the system being able to accurately determine the TX and RX times of
the messages as they leave one antenna and arrive at the other antenna. This is needed for antenna-
to-antenna time-of-flight measurements and the resulting antenna-to-antenna distance estimation.

The significant event making the TX and RX times is specified in IEEE 802.15.4 [1] as the “Ranging
Marker (RMARKER): The RMARKER is defined to be the time when the beginning of the first symbol
of the PHR of the RFRAME is at the local antenna. The time stamps should reflect the time instant at
which the RMARKER leaves or arrives at the antenna. However, it is the digital hardware that marks
the generation or reception of the RMARKER, so adjustments are needed to add the TX antenna
delay to the TX timestamp, and, subtract the RX antenna delay from the RX time stamp. This is done

 time µs

Tag s State

Node s State

TWR timing profile

Poll

IDLE FRAME TX RX ON

2450

IDLERX ON FRAME TX

Preamble Data

Final

DEEP SLEEPFRAME TX

Response

dRx_us

IDLE IDLE

IDLE

 pollTxToFinalTx_us

SLEEP

IDLE RX ONFRAME RX RX ON – FRAME RX

delayRx_us

DW3000-TWR-demo

© Decawave 2019 Qorvo 2021 SW-DW3000-TWR-demo-1.2 Page 35

automatically by DW3000, as long as the TX and RX antenna delays are configured.

The node uses configurable antenna delay values (which are initially defined in the default_config.h
file). The values have been experimentally set by adjusting them until the average reported distance
matches the measured distance. This can be re-programmed in the FConfig by using a corresponding
control command interface, see 2.3.1.3.

5.4 UWB messages, used in TWR process

There are following message addressing modes employed in the system:

• the Blink message uses long (64-bits) source address mode

• the Ranging Config message uses short (16-bit) source address and long (64-bits) destination
address mode

• the Poll, the Response, and the Final messages use both short (16-bit) source and short (16-
bit) destination address mode.

The general message formats, used in the Discovery phase and the Ranging phase follow the IEEE
802.15.4 standard encoding for a data frame, for more description see below.
Note: The messages follow IEEE message encoding conventions, but these are not standardised
RTLS messages. The reader is referred to the ISO/IEC 24730-62 international standard for details of
standardised message formats for use in RTLS systems based on IEEE 802.15.4 UWB. This may be
changed in future software revisions.

5.4.1 Tag blink message

Initially a tag transmits Blink messages using the shortest IEEE blink message format. This is an
optimized blink message which also can be used for TDOA (Time Difference of Arrival) location
methods. The encoding of the blink message is as per Figure 18 below.

Figure 18: Encoding of Tag's 12-bytes blink message

5.4.2 Ranging Config message

During initial blinking the tag has only the long 64-bit address. To support short timings, the node
assigns to the tag a temporary short address using Ranging Config response. Thus, for Ranging
Config message to be delivered to the tag, the short-long addressing mode is used. This is shown on

the Figure 19 below.

Tag s

64-bit

Address

Seq

Number

Frame

Ctrl

0xC5 -

FCS

-

1 octet 1 octet 8 octets 2 octets

DW3000-TWR-demo

© Decawave 2019 Qorvo 2021 SW-DW3000-TWR-demo-1.2 Page 36

Figure 19: Frame format of Ranging Config message

The PAN ID of the system and the node’s 16-bit addresses are in the MAC header, and the rest is in
the Ranging Config Data field: tag’s new 16-bit address and its configuration parameters. The

description of Ranging Config Data part of a range_init_msg_t structure is given in the Table 8.

Table 8: Fields within the Ranging Config message

Parameter Size,
octets

Value Description

fCode 1 0x20 Function code: This octet 0x20 identifies this as node’s
Ranging Config message

tagAddr 2 - Tag's short address to be used in the Ranging phase

reserved 4 - Reserved for compatibility with Decawave’s TREK-1000
project

version 1 0x02 Version of Ranging Config message.

Version 0x02: TWR to one node.

sframePeriod_ms 2 - Super Frame period, ms

slotCorr_us 4 - Slot correction from reception of Blink to the dedicated slot,
µs

pollTxToFinalTx_us 2 - The rough delay to be used by the tag, when it ranging to
the node: from the RMARKER of the Poll to the RMARKER
of the Final, µs

delayRx_us 2 - The tag shall start reception of Response with this delay
after the end of transmission of the Poll, µs

pollMultFast 2 - The multiplier factor for Fast ranging (when tag is moving),
in number of superframes, e.g. 1 means “range every 1
superframe”

pollMultSlow 2 - The multiplier factor for Slow ranging (when tag is
stationary), in number of superframes, e.g. 10 means
“range every 10th superframe”

Mode 2 - Bit fields for tag mode of operation:

bit 0: The Tag should use its IMU to detect its stationary
mode.

bit 1-15: reserved for future application enhancement.

Bit 0 Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit7

Frame Control (FC)

1 0 0

SEC PEND

0 1 0

Frame
Control (FC)

Sequence
Number

PAN ID

2 octet 1 octet 2 octets

Destination
Address

8 octets

Ranging Config
Data

Variable # octets

FCS

2 octets

Bit 8 Bit 9 10 11 12 13 14 15

0 0 0 0 SrcAddrMode

Source
Address

2 octets

0 1Data Frame

0 0 DestAddrMode

1 1ACK

0x41 0x8C

0, 1 2 3, 4 5 to 12 13 to 14 15 and upFrame buffer indices:

Node addrPanID

DW3000-TWR-demo

© Decawave 2019 Qorvo 2021 SW-DW3000-TWR-demo-1.2 Page 37

5.4.3 Ranging messages

During the Two Way Ranging, the tag and node use short (16-bit) addressing modes. The format of
the ranging frames, which are Poll, Response and Final is shown in Figure 20 below.

Figure 20: Frame format used for Ranging

The content of the Two Way Ranging Data portion of the frame, defined by a first octet, identifies the

type of the Ranging message: Poll, Response or Final, as per Table 9 below.

Table 9: List of Function Codes in the TWR exchange

Function Code Description

Twr_Fcode_Tag_Poll 0x84 Initiator (Tag) Poll message

Twr_Fcode__Resp 0x72 Responder (Node) extended Response

Twr_Fcode_Tag_Accel_Final 0x89 Initiator (Tag) Final message back to responder (Node)

5.4.4 The Poll message

The Poll message structure defined in the code as a structure of type poll_msg_t. This sent by the tag
to initiate a Ranging sequence. Table 10 describes the individual fields within the Poll message.

Table 10: Fields within the ranging Poll message

Parameter Size,
octets

Description

fCode 1 Function code: This octet 0x84 identifies this as a tag Poll message

rNum 1 Range number: This is a range sequence number; after each range attempt
this number is incremented (by modulo 256).

5.4.4.1 Response message

The Response message structure is defined in the code as a structure of type resp_msg_t. This sent
by the node as a Response to a Poll from the tag. Table 11 describes the individual fields within the
Response message.

Bit 0 Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit7

Frame Control (FC)

1 0 0

SEC PEND

0 1 0

Frame
Control (FC)

Sequence
Number

PAN ID

2 octet 1 octet 2 octets

Destination
Address

2 octets

Two Way
Ranging Data

Variable # octets

FCS

2 octets

Bit 8 Bit 9 10 11 12 13 14 15

0 0 0 0 SrcAddrMode

Source
Address

2 octets

0 1Data Frame

0 0 DestAddrMode

0 1ACK

0x41 0x88

0, 1 2 3, 4 5 to 6 7 to 8 9 and upFrame buffer indices:

 PanID

DW3000-TWR-demo

© Decawave 2019 Qorvo 2021 SW-DW3000-TWR-demo-1.2 Page 38

Table 11: Fields within the ranging Response message

Parameter Size,
octets

Description

fCode 1 Function code: This octet identifies this as the extended Response
message

slotCorr_us 4 Tag’s correction in microseconds, Least Significant Byte First.

This four octets are a correction factor that adjusts the Tag’s next wakeup
duration so that the Tag’s ranging activity can be assigned and aligned into
its dedicated slot.

rNum 1 Range number: This is a range sequence number, corresponding to the
range number as sent in the Poll.

x_cm 2 Last measurement of the X coordinate reported back to the tag from the
node. If no previous measurements, the 0xDEAD reported (-8531 dec).

y_cm 2 Last measurement of the Y coordinate reported back to the tag from the
node. If no previous measurements, the 0xDEAD reported (-8531 dec).

offset_ppmh 2 The Tag’s crystal offset value with respect to the Nodes’ master TCXO,
reported back to the tag from the node. If no previous measurements, the
0xDEAD reported (-8531 dec). This can be used in the automatic crystal
trimming process with respect to the node on the tag’s side.

5.4.4.2 Final message

The Final message is a structure of type final_msg_t and it sent by the tag after receiving the node’s
Response message. Table 12 lists and describes the individual fields within the Final message.

Table 12: Fields within the ranging Final message

Octet #’s Size,
octets

Description

fCode 1 Function code: This octet identifies the message as the tag Final
message

rNum 1 Range number: This is a range sequence number, corresponding to the
range number as sent in the Poll.

pollTx_ts 5 Tag Poll TX time: This 5-octet field is the TX timestamp for the tag’s poll
message, i.e. the precise time the Poll frame was transmitted.

responseRx_ts 5 Tag Response RX time: This 5-octet field is the RX timestamp for the
response from the node, i.e. the time the tag received the Response
frame from the node.

finalTx_ts 5 Final TX time: This 5-octet field is the TX timestamp of the final
message, i.e. the time the Final frame will be transmitted, (this is pre-
calculated by the tag).

flag 1 User flag, not in use.

acc_x 2 Used to supply X absolute location to the Trilat function when Tag acts
as the Fixed infrastructure element.

acc_y 2 Used to supply Y absolute location to the Trilat function when Tag acts
as the Fixed infrastructure element.

acc_z 2 Used to supply Z absolute location to the Trilat function when Tag acts
as the Fixed infrastructure element.

DW3000-TWR-demo

© Decawave 2019 Qorvo 2021 SW-DW3000-TWR-demo-1.2 Page 39

5.5 Slot Time correction method in between Node and Tag

The node and tag both use RTC timers to implement the slotted TDMA access method. The node’s
RTC timer is used to trigger the start of node’s superframe, which absolute timestamp in MCU RTC
time units is saved in the gRtcNode timestamp variable (in the Node’s application it is

gRtcSFrameZeroCnt).

The tag’s RTC timer is intended to keep the tag transmitting in its assigned TDMA slot. Every time the
tag is starting a Poll frame, the timer is configured to expire every wakeUpPeriodCorrected_ns,

which holds the value, of the duration of the tag’s superframe – note this is in the tag’s time and not in
the node’s time domain (the value is close to the node’s superframe period, but may vary). If the tag
is not intended to range on the next expiration of the timer (i.e. when the tag is configured to range
less frequently than every superframe), the timer will keep expiring every
wakeUpPeriodCorrected_ns until tag decides it is time for the next ranging exchange.

On the reception of the Response message from the node, the tag receives the slotCorr_us,

which specifies the time where the node has expected the reception of the tag’s Poll with respect to

the start of the node’s superframe (gRtcNode), see Figure 21. Upon reception of the Response, the

nextWakeUpPeriod_ns is calculated as follows:
nextWakeUpPeriod_ns = 1e6* sframePeriod_ms;

nextWakeUpPeriod_ns -= WKUP_RESOLUTION_NS * (gRtcTag - respRxRtcTag);

nextWakeUpPeriod_ns -= 1e3* slotCorr_us;

The method above includes the correction of the time needed for the tag to wake up and initiate
transmit the Poll message, so that for the next transmission the RTC should wake up the MCU at the
correct time for the pollTask to execute and transmit the Poll message.

Figure 21: Node-Tag Slot Time correction method

gRtcNode

Actual
pollRxRtcNod

e

pollTxRtcTag

Expected
pollRxRtcNode

Next poll
shall be

earlier this
time.

slotCorr_us

respRxRtcTag

gRtcTag

ReplyDelay_us

pollTxFinalTx_us

gRtcNode’

nextWakeUpPeriod_ns

Expected PollRxRtcNode_us ‘

pollTxRtcTag ‘

NODE: chip A

TX

RX

RX

TX

gRtcTag ‘

TAG

Set the standard
Wakeup time to the

~SF Period

Assigned slot to
the Tag’s Poll:

slot missed or not
very accurate

Tag’s Poll
within the

assigned slot

DW3000-TWR-demo

© Decawave 2019 Qorvo 2021 SW-DW3000-TWR-demo-1.2 Page 40

5.6 The application architecture in the flowchart

The application structure is present on block-diagrams on Figure 22, Figure 23 and Figure 24.

The flowchart on Figure 22 shows common platform blocks, on top of which a particular top-level

application is running and utilizing the common infrastructure (core tasks).

The flowchart on Figure 23 shows the interaction of the software blocks with each other on the

example of the tag top-level can be found in the sources.

The flowchart on Figure 24 shows the interaction of the software blocks with each other on the

example of the node top-level can be found in the sources.

The application of tag and node are very similar structured. A new application can be added on the

same manner to the platform.

With the reference to the figures, the main blocks are as follow:

1. Initialization of the hardware and peripherals. This is initially generated by CubeMX HAL

software, by providing the initialization of the target MCU and simplifying the physical

interface driver development.

2. RTOS based functionality. This includes the FreeRTOS kernel, and all files with prefix “task_”.

This separates the functionality of the applications, and aids in the management of MCU time

more effectively and makes the code design cleaner at the expense of a small increase in

latency. This adds an “application” layer, sitting on the top of bare-metal implementations, i.e.

Tag, Node, Trilat, TCFM, TCWM and Usb2Spi.

3. Bare-metal implementation of functionality: callbacks, tx_start, usb_uart_rx, usb_uart_tx, etc.

The source files are organized to match the architecture of the application, see section 1.2.

DW3000-TWR-demo

© Decawave 2019 Qorvo 2021 SW-DW3000-TWR-demo-1.2 Page 41

Start
START

SCHEDULER

INITIALIZE HW

CUBEMX HAL

SETUP THREADS

- Default thread.
- Control thread.
- Flush thread.

Read Default
Configuration

(NVM)

Default Thread

-Initial LED blinking;
-Run in slow loop:
 1) USB VBUS PIN driver
 2) User top-level application
switcher

Src/main.c

EVENT to start top-level application

RTC

RTC: resolution 61.035 us;
Maximum count 32767.

dw3000 power manager()

Manually put dw3000 to Deep Sleep
mode

Simple top-level application TCWM

- Kill all tasks which can interact to
shared resource: dw3000.
- Run CWM test mode;

Src/bare/usb_uart_rx.c

- Wait for USB Command
- Wait for Data if Usb2Spi

Control Command and Data Task

- Wait the USB Received Signal;
- Wait for Control or Usb2Spi sequence
in the USB Rx buffer;
- Execute appropriate command;
- Send Event to start appropriate top-
level application: Node; Usb2Spi;
TCWM; TCFM;

Src/task/task_ctrl.c

Src/bare/usb_uart_tx.c

- Check USB TX circular buffer;
- Send next chunk if any;

Src/bare/tcfm.c

- Init CFM test mode process;
- Run CFM test mode process;
- Stop CFM test mode process;

Report Buffer flush Task

- Wait signal to empty the Report
Buffer;
- Periodically check and empty the
Report Buffer

Src/task/task_flush.c

Simple top-level application TCFM

- Kill all tasks which can interact to
shared resource: dw3000.
- Run CFM test mode;

Src/task/task_tcfm.c

Src/task/task_tcwm.c

Src/bare/tcwm.c

- Init CWM test mode process;
- Run CWM test mode process;
- Stop CWM test mode process;

Simple top-level application Usb2Spi

- Kill all tasks which can interact to
shared resource: dw3000.
- Run Usb2Spi;

Src/task/task_usb2spi.c

Src/bare/usb2spi.c

- Init USB2SPI process;
- Run USB2SPI process;
- Stop USB2SPI process;

Signal

Signal

USB CDC Rx callback
(from USB driver Rx IRQ)

- Add chunk of data from
driver to the USB RX
buffer;
- Signal USB Received.

USB CDC TX

Transmit 64 bytes

Src/Usb_cdc_if.c (MX file)

SPI()

Blocking transaction. In general, RTOS CAN interrupt this.

If calling from Application level, must be protected by RTOS Mutexes.
If calling from ISR level – not need to be protected.

DMA_IRQ()
Low level IRQ

Below RTOS prio.
RTOS cannot interrupt;
Cannot signal to RTOS;

SPI_IRQ()
Low level IRQ

Below RTOS prio.
RTOS cannot interrupt;
Cannot signal to RTOS;

Src/platform_xxx/deca_spi.c

Idle Hook Thread

Executed by kernel when no other Tasks
are running.
- Put MCU to LowPower mode.

Complex top-level Application (node) Complex top-level Application (tag) New complex top-level Application (new)

Figure 22 Common platform blocks

DW3000-TWR-demo

© Decawave 2019 Qorvo 2021 SW-DW3000-TWR-demo-1.2 Page 42

dw3000 power manager

Manually put dw3000 to
Deep Sleep mode

RTC WKUP TIMER IRQ - RTOS level prio;

- Once configured, is always running;
- 61.035us resolution;
Scope:
- Sets gRtcSFrameZeroCnt: start of
internal SuperFrame;
- Counting Slow/Fast range options;
- Signal to the Poll thread to transmit;
- Wake up MCU every SuperFrame;

Setup Range Phase parameters

- Configure “air” run-time parameters:
 . Tag Short Address,
 . SuperFrame period,
 . TWR exchange delays,
 . Slow and Fast range rates.

Configure RTC WKUP TIMER.

- Configures the RTC WKUP Timer
to the correct slot for the next
Poll

initiator_send_blink()

- Setup Tag Std Blink Msg;
- Setup Delayed Rx, Delayed Rx timeout;
- Transmit Blink immediate;
(dw3000 will go to sleep on RX_Timeout/RX_err c

initiator_response_rx()

- Setup Tag Final Msg;
- Calculate Final Tx Time;
- Transmit Final delayed;

twr_initiator_algorithm_rx()

- On reception of Range-Config Msg executes
initiator_received_range_init():
 . Setup Range Phase parameters;
 . Reconfigure RTC WKUP TIMER.

- On reception of Response Msg
 . Configure/Adjust RTC timer for exact Slot for next Poll;
 . Send Final: initiator_response_rx();

twr_rx_callback()

- Save rxPacket, TimeStamp, RTC Rx
Time to the fast circular buf;

-Signal to the Rx Thread.

rxPckt
data

Signal

initiator_send_poll()

- Setup Tag Poll Msg;
- Setup Delayed Rx, Delayed Rx timeout;
- Transmit Poll immediate;

Src/bare/tag.c

tx_start()

Signal

No
data

No
data

Call RX callback RxGood from DWT_ISR()

Signal

HAL_GPIO_EXTI_Callback():
DW_IRQ_A_PIN

- RTOS level priority, such DWT_ISR
can signal to threads.
- Wake up MCU on IRQ;
- Run DWT_ISR()

Wakeup / RTC callback

- RTC: resolution 61.035 us;
- Maximum count 32767.
- Sets gRtcSFrameZeroCnt
- Signals to Blink/Poll Thread to Transmit

twr_tx_callback()

- Save TxTimestamp and RTC
Tx Time for blink, poll or

final;

rx_to_callback()

- Abort range;
- Enable dw3000 sleep;

Src/bare/tag.c

rx_err_callback()

- Abort range;
- Enable dw3000 sleep;

Tag Rx Thread (TagRxTask)

- Wait the Rx Signal.
- Extract rxPckt from circular buf;
- Execute fn: twr_initiator_algorithm_rx();
- Manually put DW3000 to sleep on wrong
Rx;
Note: this should be the high priority task.

TAG helper

- Setup run-time environment of dw3000
for TAG mode (CH/PRF/FrameFiltering/
callbacks)
- Setup RTC timer;
- Setup Blinking thread;
- Setup Tag Rx thread;

RANGING CONFIG phase

- uses RTC timer;
- Count Blink period;
- Signal to the Blinking thread to transmit

Blinking Thread (TwrBlinkTask)

- Wait for Blink signal;
- Wake up dw3000;
- Execute fn: initiator_send_blink();

Src/task/Task_tag.c

Polling Thread (TagPollTask)

- Wait Poll Signal;
- Wake up dw3000;
- Execute fn: initiator_send_poll().
- If FaultyRange Counter is over the limit,
then setup Event to Switch Helper to
restart the Tag app.

EV
EN

T
: r

es
ta

rt
 T

A
G

Figure 23 Operational flow on the "tag" top-level application

DW3000-TWR-demo

© Decawave 2019 Qorvo 2021 SW-DW3000-TWR-demo-1.2 Page 43

Node Rx Thread (rxTask)

- Wait the Rx Signal.

- Extract rxPckt from buffer;
- Execute twr_responder_algorithm_rx();
 .If Final message received, send a mail to
calculate distance and pdoa;

Node Helper

- Kill all tasks which can interact to shared
resource: DW3000.
- Setup run-time environment of DW3000
for TWR (CH/PRF/callbacks)
- Setup RTC WKUP timer IRQ for
Superframe count
- Start Node Rx Thread.
- Start Calculation thread.

RTC WKUP TIMER IRQ - RTOS level prio;

- Is always running;
- 61.035 us resolution;
- Interrupt on Superframe period.

Scope:
- Counting exact Superframe time;
- Saves global RTC time start of Superframe:
[volatile uint32_t gRtcSFrameZeroCnt]

node_send_response(tag_addr16)

- Setup Delayed Rx time for DW3000 chip;
- Calculate the tag’s slot correction time,
using PollRx_RTC_ts, tag’s slot number and
gRtcSFrameZeroCnt;
- Send Delayed response Tx;

get_tag64_from_knownTagList()

- If the tag’s addr64 is not in the KList, then:
 . Add the addr64 to the DList;
 . Signal to the output that a NEW_TAG has
been discovered;
 . Return NULL;
- If the tag addr64 is found in the KList, return
*tag;

node_send_range_config

- Setup Ranging Config Msg for the the tag;
- Setup Delayed Rx, Delayed Rx timeout for RC
message;
- Transmit RC delayed.

Twr_responder_algorithm_rx()

- On reception of Blink Msg:
 . Execute authorization(tag_addr64);
 . Execute range_init(*tag) if OK.
 . Ignore / re-enable the receiver if tag is not
authorized;

- On reception of Poll msg:
 . Check if tag is in known_tag_list
 . Execute fn: responder_response_rx();

- On reception of Final msg:
 . Check if tag is in known_tag_list
 . Read phase and range data from chip
 . Report to application app

Src/task/task_node.c

twr_rx_node_callback()

- add RxPacket, DW3000 TimeStamp,
RTC_Rx_Time to the rxPcktBuf circular buffer;

-send Signal to the Rx Node Thread.

rxPckt
data

Signal

Src/bare/node.c

tx_start()

Calculation Thread (calcTask)

- Wait for the mail with raw data to
calculate Distance & PDoA.

- Calculate Distance and Phase Difference
of Arrival for the given tag;
- Send result to the Report circular buffer;
- Release the mail queue;

reportTOF()

Call RX callback from DWT_ISR()

IHAL_GPIO_EXTI_Callback():
DW_IRQ_A_PIN

- RTOS level priority, such DWT_ISR can
signal to threads.
- Wake up MCU on IRQ;
- Timestamp RTC RX time
- run DWT_ISR()

twr_tx_node_cb()

- Save TxTimestamp and RTC Tx Time for Response;
- set Delayed Rx time for DW3000 chip for expected

receive of Final;
- set DW3000 RX timeout for Final;

rx_to_callback()

- Abort range;
- Re-enable Rx;

rx_err_callback()
- Abort range;
- Re-enable Rx;

Src/bare/node.c

Wakeup / RTC callback

- RTC: resolution 61.035 us;
- Maximum count 32767.
- Sets gRtcSFrameZeroCnt

Figure 24 Operational flow on the "node" top-level application

DW3000-TWR-demo

© Decawave 2019 Qorvo 2021 SW-DW3000-TWR-demo-1.2 Page 44

6 BIBLIOGRAPHY

Ref Author Title

[1] IEEE

IEEE 802.15.4‐2011 or “IEEE Std 802.15.4™‐2015” (Revision of
IEEE Std 802.15.4-2006).

IEEE Standard for Local and metropolitan area networks— Part 15.4:
Low-Rate Wireless Personal Area Networks (LR-WPANs). IEEE
Computer Society Sponsored by the LAN/MAN Standards
Committee.

Available from http://standards.ieee.org/

[2] Decawave
DecaRanging PC application, available from
https://www.decawave.com/

http://standards.ieee.org/
https://www.decawave.com/

DW3000-TWR-demo

© Decawave 2019 Qorvo 2021 SW-DW3000-TWR-demo-1.2 Page 45

7 REVISION HISTORY

Revision Date Description

1.2 06-Dec-2021 Public release

1.1 25-Jul-2020 Updated to include new commands

1.0 16-Apr-2020 Updated to include Listener application

0.2 03-Oct-2019 Revised to match actual

0.1 24-Jan-2019 Initial draft

DW3000-TWR-demo

© Decawave 2019 Qorvo 2021 SW-DW3000-TWR-demo-1.2 Page 46

8 FURTHER INFORMATION

Decawave develops semiconductors solutions, software, modules, reference designs - that enable
real-time, ultra-accurate, ultra-reliable local area micro-location services. Decawave’s technology
enables an entirely new class of easy to implement, highly secure, intelligent location functionality
and services for IoT and smart consumer products and applications.

For further information on this or any other Decawave product, please refer to our website
www.decawave.com.

http://www.decawave.com/

	1 Introduction
	1.1 Basic operation

	1 Description of Juniper ARM platform
	1.1 Juniper architecture
	1.1.1 Top-level applications layer
	1.1.2 Core tasks
	1.1.3 Drivers
	1.1.4 FreeRTOS
	1.1.5 Target HAL

	1.2 Juniper source code - folder structure

	2 Operation of the main code
	2.1 Startup, initial HAL configuration and starting of the kernel
	2.2 Core tasks
	2.2.1 Default task
	2.2.2 USB_VBUS driver

	2.3 Control task: modes of operation
	2.3.1 Command mode of Control task
	2.3.1.1 Anytime commands
	2.3.1.2 Commands to change mode of operation
	2.3.1.3 Commands to change run-time parameters

	2.3.2 Controlling of the embedded applications over a PC GUI app
	2.3.2.1 The PC to the Node-application specific commands
	2.3.2.2 The Node top-level application output to PC
	2.3.2.3 The Tag top-level application output
	2.3.2.4 The Trilat top-level application output

	2.4 Flush task
	2.5 RTOS extensions used in the application

	3 In deep about top-level applications
	3.1 Node top-level application
	3.1.1 Concept of Discovered and Known tags lists
	3.1.2 Discovery and ranging to tags
	3.1.3 The superframe, the wakeup timers and the tag’s slot correction

	3.2 Tag top-level application
	3.2.1 The Discovery phase
	3.2.2 The Ranging phase

	3.3 Usb2Spi top-level application
	3.4 TCWM top-level applications
	3.5 TCFM top-level applications
	3.6 Listener top-level application
	3.7 Low power mode in Juniper applications

	4 Building and running the Code
	4.1 Building the code
	4.2 Downloading and running the code

	5 Appendix A
	5.1 Two Way Ranging algorithm
	5.2 UWB configuration and TWR timing profile used in the system
	5.3 Frame time adjustments
	5.4 UWB messages, used in TWR process
	5.4.1 Tag blink message
	5.4.2 Ranging Config message
	5.4.3 Ranging messages
	5.4.4 The Poll message
	5.4.4.1 Response message
	5.4.4.2 Final message

	5.5 Slot Time correction method in between Node and Tag
	5.6 The application architecture in the flowchart

	6 Bibliography
	7 Revision History
	8 Further Information

