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Introduction 

Control theory is one of the many aspects of electronic theory required 
for power electronic design.  With the ever increasing popularity of 
digital control, it is important to have a good understanding of the basics 
of digital control.  Many textbooks have been written about system 
modeling and control theory, but what can be difficult to find is a clear 
explanation of how to take an existing continuous-time model and 
convert it to something that can actually be programmed into a 
microcontroller.  This is the subject of this application note.  As an 
example, a continuous-time transfer function is implemented in C code, 
with the essential mathematical theory highlighted along the way. 
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Overview 

The process of transforming a continuous-time transfer function to digital control code is as 
follows.  We use the bilinear transformation to map the transfer function from the complex s-
plane to the complex z-plane.  After normalizing the denominator of the resulting z-domain 
transfer function, we rearrange it to solve for the output.  Finally, we take the reverse Z-
transform to yield a discrete-time difference equation that can be directly implemented in a 
digital controller. 

We start with a continuous-time transfer function.  This could be a filter or a control loop 
compensator (which is also a filter) derived from a small-signal model of the power converter.  
How to create the continuous-time transfer function is outside the scope of this application 
note.  The goal here is to implement an existing transfer function digitally in a microcontroller. 

Consider a general nth order analog transfer function, with subscript a indicating analog. 

𝐻𝑎(𝑠) =
𝑌(𝑠)

𝑋(𝑠)
=

𝐵0+𝐵1𝑠+𝐵2𝑠2+⋯+𝐵𝑛𝑠𝑛

𝐴0+𝐴1𝑠+𝐴1𝑠2⋯+𝐴𝑛𝑠𝑛 (1) 

In equation (1), Ha(s) represents a filter transfer function where Y(s) and X(s) represent the 
output and input respectively, and s is the complex frequency variable s=σ+jω with ω being the 
angular frequency.  The coefficients B0,B1,⋯Bn and A0,A1,⋯An can be real numbers including 
zero.  Such a transfer function can be used to solve an nth order differential equation. 

Many transfer functions are first or second order.  First and second order filters can be 
cascaded to create higher order filters.  An example of a second order low-pass filter transfer 
function is given below in equation (2), and this is the example that we will follow through to 
create sample C code for a microcontroller.  In this equation, ω0 is the natural angular frequency 
of the system, and ζ (zeta) is the damping factor. 

𝐻𝐹(𝑠) =
𝜔0

2

𝑠2+𝑠2𝜁𝜔0+𝜔0
2 (2) 

With 𝜁 =
√2

2
 this transfer function is a second-order Butterworth filter with a cutoff frequency 

at ω0.  (Use 𝜁 =
√3

2
 for Bessel.)  Referring to equation (1), the coefficients for this example are: 

𝐵0 = 𝜔0
2, 𝐵1 = 0, 𝐵2 = 0, 𝐴0 = 𝜔0

2, 𝐴1 = 2𝜁𝜔0, and𝐴2 = 1.

The Z-Transform 

Comparable to how the Laplace transform converts continuous-time signals to the complex 
frequency s-plane, the z-transform converts a discrete-time sequence of numbers to a complex 
frequency z-plane representation.  Mathematically, the discrete-time numbers can be real or 
complex, but in reality they represent a sequence of values sourced from the analog-to-digital 
converter (ADC); and input, stored, and output values of our digital filter. 
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Consider a discrete number sequence 𝑥(𝑘) generated from data sampled every T seconds, 
𝑘 = 0, 1, 2, ⋯, and where 𝑥(𝑘) is understood to be 𝑥(𝑘𝑇), but the sampling period T is dropped 
for convenience.  The z-transform of 𝑥(𝑘) is defined as a power series of 𝑧−𝑘 with coefficients 
equal to 𝑥(𝑘).  The transform is then 

𝑋(𝑧) = 𝒵[𝑥(𝑘)] = 𝑥(0) + 𝑥(1)𝑧−1 + 𝑥(2)𝑧−2 + ⋯ (3) 

In equation (3), 𝒵[∙] indicates the z-transform.  This can be written as 

𝑋(𝑧) = 𝒵[𝑥(𝑘)] = ∑ 𝑥(𝑘)𝑧−𝑘∞
𝑘=0  (4) 

This is the single-sided or unilateral z-transform.  We need to know about the z-transform and a 
couple of its properties in order to take its inverse, resulting in a discrete-time sequence that is 
easily programmed into a digital controller.  The first property is linearity, meaning that we can 
perform addition and multiplication with z-domain terms.  The second property is time shifting 
(also called real translation). 

𝑍(𝑥(𝑘 − 𝑛)) = 𝑧−𝑛 ∙ 𝑋(𝑧) (5) 

To time-shift back 𝑛 samples, we simply multiply the z-transform term by 𝑧−𝑛. 

Now consider a discrete-time domain transfer function, with subscript d indicating discrete (or 
digital). 

𝐻𝑑(𝑧) =
𝑌(𝑧)

𝑋(𝑧)
=

𝛽0+𝛽1𝑧+𝛽2𝑧2+⋯+𝛽𝑛𝑧𝑛

𝛼0+𝛼1𝑧+𝛼2𝑧2+⋯+𝛼𝑛𝑧𝑛 (6) 

Our z-domain transfer function could be in this form after performing the bilinear transform on 
the s-domain transfer function.  We must convert it to a form that facilitates taking the inverse 
z-transfer of the transfer function, and for solving for the discrete-time output 𝑦(𝑘).  To do this,
we divide the top and bottom of equation (1) by 𝑎𝑛𝑧𝑛, where 𝑛 is the order of the transfer
function.  If we consider 𝑛 = 2 in equation (6) and divide the numerator and denominator by
𝑎𝑛𝑧𝑛, and rename the coefficients, the result is a normalized second order transfer function.

𝐻𝑑(𝑧) =
𝑌(𝑧)

𝑋(𝑧)
=

𝑏0+𝑏1𝑧−1+𝑏2𝑧−2

1+𝑎1𝑧−1+𝑎2𝑎−2 (7) 

The transfer function must end up in this normalized form (1 + ∙∙∙ in the denominator) with 
other terms raised to a negative power of z.  This allows you to solve for 𝑌(𝑧).  Due to linearity 
of the z-transform, we can rearrange equation (7). 

𝑌(𝑧)(1 + 𝑎1𝑧−1 + 𝑎2𝑧−2) = 𝑋(𝑧)(𝑏0 + 𝑏1𝑧−1 + 𝑏2𝑧−2) (8) 

Finally, solve for 𝑌(𝑧). 

𝑌(𝑧) = 𝑏0𝑋(𝑧) + 𝑏1𝑋(𝑧)𝑧−1 + 𝑏2𝑋(𝑧)𝑧−2 − 𝑎1𝑌(𝑧)𝑧−1 − 𝑎2𝑌(𝑧)𝑧−2 (9) 

Recalling the time shifting property, we can take the inverse z-transform directly. 

This is the key to 
implementing modeled 
systems in a digital controller 
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𝑦(𝑘) = 𝑏0𝑥(𝑘) + 𝑏1𝑥(𝑘 − 1) + 𝑏2𝑥(𝑘 − 2) − 𝑎1𝑦(𝑘 − 1) − 𝑎2𝑦(𝑘 − 2) (10) 

This is a difference equation (solution to a differential equation in discrete-time) that is easily 
implemented in a digital controller.  For example, 𝑥(𝑘) is the recently measured value from the 
ADC, and 𝑥(𝑘 − 1) and 𝑥(𝑘 − 2) are the first and second previous measured values respectively.  
(Actual values are most likely scaled in some way.)  Similarly, 𝑦(𝑘 − 1) is the previous result 
value, and 𝑦(𝑘 − 2) is from two results prior.  So all values needed to compute the present 
value of 𝑦(𝑘), our desired output from the filter, are known. 

As a side note, equation (7) is sometimes written with the coefficients of the denominator 
somewhat arbitrarily negated, probably to save an assembly code instruction in certain 
microcontrollers.  This masks the fact that we are dealing with a difference equation, but the 
end result is of course the same. 

The s and z Planes 

Now that we have “seen the answer at the back of the book”, we need to map from the s-plane 
to the z-plane, in preparation to performing the bilinear transform.  The exact mapping between 

them is made through the relationships 𝑧 = 𝑒𝑠𝑇  and inversely 𝑠 =
1

𝑇
𝑙𝑛(𝑧).  By calculating z for

various complex values of s and a fixed value for T, you find that the imaginary axis of the s-
plane maps to the unit circle on the z-plane.  The left and right halves of the s-plane map to 
within and without the z-plane unit circle respectively. 

 (a)    (b) 

Figure 1 (a) complex s-plane (b) complex z-plane with exact mapping 

As an example, consider a point 0 + j0 in the complex s-plane.  It maps to 1 + j0 in the complex 
z-plane, as indicated by the red circles in Figure 1 (a) and (b).  Now consider point 0 + j1 in the
s-plane, which maps to -0.42 + j0.91 in the z-plane with the sampling time T set to 2 seconds,
as indicated by the yellow triangles.  This mapping is calculated using Euler’s formula
𝑒𝑗𝜔𝑇 = cos(𝜔𝑇) + 𝑗 sin(𝜔𝑇).  Imagine the angular frequency increasing, which would
correspond to the yellow triangle moving up along the 𝑗𝜔 axis in the s-plane, and rotating
counterclockwise along the unit circle in the z-plane.  A point in the z-plane can make any
number of counterclockwise revolutions as the angular frequency increases, or clockwise
revolutions as the frequency decreases.  Finally, consider a point at   -1 + j0 in the s-plane,
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which corresponds to 0.135 + j0 in the z-plane, indicated by the green squares in Figure 1 (a) 
and (b).  Since this point is in left half of the s-plane, it maps to within the unit circle in the z-
plane.  If this point moves farther left (more negative) along the real axis in the s-plane, the 
corresponding point in the z-plane moves closer to the origin but never quite reaches it. 

The Bilinear Transform 

Because the exact mapping 𝑠 =
1

𝑇
𝑙𝑛(𝑧) is nonlinear, it is difficult to implement in many digital 

controllers.  An approximate mapping resulting in efficient filter computation is desirable.  The 
bilinear transform is popular for this, especially because it results in unique mapping, and so as 
with exact mapping, there is no aliasing.  Also, a stable analog filter yields a stable digital filter, 
and the gain (maxima and minima) is preserved in the digital filter.  The phase margin of a 
feedback control loop filter is however reduced due to ADC delay, and there is frequency 
warping; both of which will be discussed. 

The bilinear transform is defined as 

𝑠 ←
2

𝑇

𝑧−1

𝑧+1
(11) 

The inverse bilinear transform is 

𝑧 ←
1+

𝑠𝑇

2

1−
𝑠𝑇

2

(12) 

This can be derived either by trapezoidal integration, or by Taylor series approximation ignoring 
all but the first-order terms.  The bilinear transformation is a first-order approximation, and 
therefore the mapping between s and z-planes is different from the exact mapping in some 
important ways. 

  (a)     (b) 

Figure 2 (a) complex s-plane (b) complex z-plane with bilinear approximation mapping 

Using the inverse bilinear transform, the point 0 + j0 in the s-plane maps to 1 + j0 in the z-
plane, as with the exact mapping in Figure 1 (a) and (b).  The point 0 + 1j in the s-plane now 
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maps to 0 + 1j in the z-plane; still on the unit circle but with a different rotation.  There is no 
revolution about the origin with the bilinear transform.  Instead, increasing the angular 
frequency moves the yellow triangle in the s-plane of Figure 2 (a) up along the jω axis while it 
approaches -1 + j0 along the unit circle in the z-plane of Figure 2 (b).  Points on the jω axis in 
the s-plane still map to the unit circle in the z-plane, and points in the left half of the s-plane still 
map to within the unit circle of the z-plane, but the frequency response is different.  Along the 
real axes, the point -1 + j0 in the s-plane now maps to the origin of the z-plane, indicated by the 
green squares in Figure 2 (a) and (b).  If a point moves farther left (more negative) along the real 
axis in the s-plane, the corresponding point in the z-plane moves closer to -1 along the real axis 
but never quite reaches it, indicated by the blue diamonds in Figure 2.  To summarize, plus or 
minus infinity in frequency converges on -1 + j0 in the z-plane as well as minus infinity along 
the real axis of the s-plane. 

Frequency Response and Warping 

To determine the frequency response of in discrete-time, the exponential response is ignored 
such that the continuous-time complex frequency variable s reduces from 𝑠 = 𝜎 + 𝑗𝜔 to simply 
𝑠 = 𝑗𝜔. 

𝐻𝑑(𝑧) = 𝐻𝑑(𝑒𝑗𝜔𝑑𝑇) = 𝐻𝑎 (
2

𝑇

𝑧−1

𝑧+1
) = 𝐻𝑎 (

2

𝑇

𝑒𝑗𝜔𝑑𝑇−1

𝑒𝑗𝜔𝑑𝑇+1
) (13) 

Equation (13) can be simplified to 

𝐻𝑑(𝑒𝑗𝜔𝑑𝑇) = 𝐻𝑎 (𝑗
2

𝑇
𝑡𝑎𝑛 (𝜔𝑑

𝑇

2
)) (14) 

Equation (14) verifies that points on the unit circle of the z-plane map to points on the jω axis of 
the s-plane, and it shows that the discrete-time to continuous-time frequency mapping of the 
bilinear transform is 

𝜔𝑎 =
2

𝑇
tan (𝜔𝑑

𝑇

2
) (15) 

Solving for 𝜔𝑑: 

𝜔𝑑 =
2

𝑇
arctan (𝜔𝑎

𝑇

2
) (16) 

At this point it is helpful to note that the Nyquist frequency in radians per second is  𝜔𝑁𝑦𝑞𝑢𝑖𝑠𝑡 =

2𝜋
1

2𝑇
=

𝜋

𝑇
.  With a sample time of 2s, the Nyquist frequency is 1.57 rad/s.
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Figure 3 ωd versus ωa with T = 2s 

Figure 3 clearly shows the frequency warping effect of the bilinear transform.  At low 
frequency 𝜔𝑑 ≅ 𝜔𝑎, but as ωa increases, ωd levels off and approaches but never quite reaches 
the Nyquist frequency, even though ωa is itself can be far above the Nyquist frequency, in a 
mathematical sense at least.  The Nyquist frequency therefore correlates to the -1 + j0 point on 
the z-plane of the bilinear transform, see Figure 2 (b). 

To use the bilinear transform effectively it is important to understand the error caused by 
frequency warping.  Relating this error to the capability of the digital controller is helpful to 
know whether the discrete-time response will be acceptable, or if measures should be taken to 
reduce the error. 

   (a)  (b) 

Figure 4 Error versus frequency ratio with (a) continuous-time frequency ≤ Nyquist frequency, 
and (b) zoomed in for clarity 

In Figure 4, the error between continuous and discrete-time frequencies is plotted as a function 
of the ratio of the sampling frequency to the continuous-time frequencies.  Figure 4 (a) starts 
with a ratio corresponding to the continuous-time frequency equal to the Nyquist frequency, 
and Figure 4 (b) shows a subset of the plot for clarity at lower percentage error.  From Figure 4 
(b) we see that if the sampling frequency is ten times higher than the continuous-time
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frequency, then the error in the discrete-time frequency is about 3.1 %.  To keep the error 
within 1 % the sampling frequency must be at least 18 times higher than the continuous-time 
frequency of interest, which is usually a cutoff frequency for a filter. 

Increasing the sampling frequency reduces the warping error at a given frequency.  If increasing 
the sampling frequency is not practical, then it is possible to reduce the warping error at a 
certain frequency by pre-warping.  This can be accomplished while making the bilinear 

transform by multiplying the substitution for the continuous-time variable s with 
𝜔𝑑

𝜔𝑎
, and

substituting in 𝜔𝑎 from equation (15).  The pre-warped bilinear transform is thus 

𝑠 ←
𝜔𝑑

𝜔𝑎
∙

2

𝑇

𝑧−1

𝑧+1
=

𝜔𝑑
2

𝑇
tan(𝜔𝑑

𝑇

2
)

∙
2

𝑇

𝑧−1

𝑧+1
=

𝜔𝑑

tan(𝜔𝑑
𝑇

2
)

𝑧−1

𝑧+1
(17) 

Calculating Discrete-Domain Coefficients 

To generate the discrete-time coefficients of the z-domain transfer function of equation (7), a 
bilinear transform with simplified notation is applied to the s-domain transfer function, with or 
without pre-warping.  This notation is as follows. 

𝑠 ← 𝐾
𝑧−1

𝑧+1
where 𝐾 ≜

2

𝑇
 without pre-warping, and 𝐾 ≜

𝜔0

tan(𝜔0
𝑇

2
)
 with pre-warping around angular 

frequency 𝜔0. 

Substituting this into a general first-order continuous-time transfer function yields 

𝐻𝑎(𝑠) =
𝐵1𝑠+𝐵0

𝐴1𝑠+𝐴0
→ 𝐻𝑑(𝑧) =

𝐵1𝐾
𝑧−1

𝑧+1
+𝐵0

𝐴1𝐾
𝑧−1

𝑧+1
+𝐴0

=
𝑧(𝐵0+𝐵1𝐾)+𝐵0−𝐵1𝐾

𝑧(𝐴0+𝐴1𝐾)+𝐴0−𝐴1𝐾
(18) 

The denominator must be normalized to the form 1 + 𝑎1𝑧−1, which is done by dividing the top
and bottom of equation (18) by 𝑧(𝐴0 + 𝐴1𝐾). 

𝐻𝑑(𝑧) =

𝐵0+𝐵1𝐾

𝐴0+𝐴1𝐾
+

𝐵0−𝐵1𝐾

𝐴0+𝐴1𝐾
𝑧−1

1+
𝐴0−𝐴1𝐾

𝐴0+𝐴1𝐾
𝑧−1

(19) 

Distinguishing z-domain coefficients with lower-case coefficients, this can be written in the 
form of equation (7) as 

𝐻𝑑(𝑧) =
𝑏0+𝑏1𝑧−1

𝑎0+𝑎1𝑧−1 with 𝑏0 =
𝐵0+𝐵1𝐾

𝐴0+𝐴1𝐾
, 𝑏1 =

𝐵0−𝐵1𝐾

𝐴0+𝐴1𝐾
, 𝑎0 = 1, and 𝑎1 =

𝐴0−𝐴1𝐾

𝐴0+𝐴1𝐾
. 

See the appendix for formulas of second, third, and forth-order z-domain coefficients. 

To apply pre-warping at a certain specified frequency 𝜔0, use the 
𝜔0

tan(𝜔0
𝑇

2
)
 definition for K, 

otherwise use 𝐾 =
2

𝑇
.  DC response is preserved, whether pre-warping or not.  Beware however 

that while pre-warping aligns the continuous and discrete-time frequency response at the 
specified frequency, other frequencies are still warped, but differently from that shown in 
Figure 3.  This could be a concern for example with bandpass and band-reject filters. 

Bilinear transform 
approximation improves with 
increased samples compared 
with signal frequency 
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Example 

A design goal is to implement a second-order Butterworth low-pass filter with a cutoff 
frequency within 5 % of 800 Hz with a microcontroller capable of sampling (performing an 
analog-to-digital conversion and executing the filter code) at a 10 kHz rate. 

The sample frequency is 12.5 times higher than the cutoff frequency, which from Figure 4 (b) 
means the actual cutoff frequency of the digital filter is within 2 % of the 800 Hz specification.  
Up to 5 % error is allowed, so no pre-warping is required. 

The continuous-time second-order Butterworth transfer function from equation (2) is repeated 
here for convenience. 

𝐻𝐹(𝑠) =
𝜔0

2

𝑠2+𝑠2𝜁𝜔0+𝜔0
2 with 𝜁 =

√2

2
, and 𝜔0 = 2𝜋800 = 5026.5. 

Substitute the coefficients 𝐵0 = 𝜔0
2, 𝐵1 = 0, 𝐵2 = 0, 𝐴0 = 𝜔0

2, 𝐴1 = 2𝜁𝜔0, and 𝐴2 = 1 into the

formula for second-order z-domain coefficients from the appendix with 𝐾 =
2

𝑇
 since pre-

warping is not required.  With the sampling frequency equal to 10 kHz, the sampling period T is 
the inverse of 10 kHz, or 0.0001 seconds. 

𝑏0 =
𝐵0+𝐵1𝐾+𝐵2𝐾2

𝐴0+𝐴1𝐾+𝐴2𝐾2 =
𝜔0

2

𝜔0
2+2𝜁𝜔0

2

𝑇
+(

2

𝑇
)

2 =
25266187

25266187+142172254+400000000
=

25266187

567438441
= 0.044527 

𝑏1 =
2𝐵0−2𝐵2𝐾2

𝐴0+𝐴1𝐾+𝐴2𝐾2 =
2𝜔0

2

𝜔0
2+2𝜁𝜔0

2

𝑇
+(

2

𝑇
)

2 =
50532375

567438441
= 0.089053 

𝑏2 =
𝐵0−𝐵1𝐾+𝐵2𝐾2

𝐴0+𝐴1𝐾+𝐴2𝐾2 =
𝜔0

2

𝜔0
2+2𝜁𝜔0

2

𝑇
+(

2

𝑇
)

2 = 𝑏0 = 0.044527 

𝑎0 = 1 

𝑎1 =
2𝐴0−2𝐴2𝐾2

𝐴0+𝐴1𝐾+𝐴2𝐾2 =
2𝜔0

2−2(
2

𝑇
)

2

𝜔0
2+2𝜁𝜔0

2

𝑇
+(

2

𝑇
)

2 =
50532375−800000000

567438441
= −1.320791 

𝑎2 =
𝐴0−𝐴1𝐾+𝐴2𝐾2

𝐴0+𝐴1𝐾+𝐴2𝐾2 =
𝜔0

2−2𝜁𝜔0
2

𝑇
+(

2

𝑇
)

2

𝜔0
2+2𝜁𝜔0

2

𝑇
+(

2

𝑇
)

2 =
25266187−142172254+400000000

567438441
= 0.498898 

The C code to implement the filter is shown below.  The define statements and data structure 
definition are typically placed in a header file, included in a source code file with the 
instantiation of the filter data structure and the filter code.  This code is intended for a floating 
point microcontroller, such as TMS320F28335 or TMS320F28069 from Texas Instruments.  
Notice how simple the actual C code is.  Such code compiles into very efficient executable 
code. 
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// IIR "Butterworth" coefficients, 800 Hz corner freq, 10 kHz sample rate 
#define BW_b2  0.044527 
#define BW_b1  0.089053 
#define BW_b0  0.044527 
#define BW_a2  0.498898 
#define BW_a1 -1.320791 

typedef struct  // Second order filter structure 
{ 
  float x[3], y[3]; //y[0] stores the "clean" output value 
}filter2struct; 

volatile filter2struct filter2; 

// ***** IIR "Butterworth" filter, 800 Hz corner freq, 10 kHz sample rate 
filter2.x[0] = ADCbuf[0]; // ADC buffer contains input data to filter 
filter2.y[0] = BW_b2 * filter2.x[2] 

+ BW_b1 * filter2.x[1]
+ BW_b0 * filter2.x[0]
- BW_a2 * filter2.y[2]
- BW_a1 * filter2.y[1];

filter2.x[2] = filter2.x[1]; 
filter2.x[1] = filter2.x[0]; 
filter2.y[2] = filter2.y[1]; 
filter2.y[1] = filter2.y[0]; // y[0] stores the "clean" output value 

ADC Delay and Phase Lag 

If we represent the phase lag introduced by the ADC and other delays as a zero-order hold, 
then the phase lag caused by delays can be expressed as 

𝜃𝑙𝑎𝑔 = 𝜔 ∙
𝛿𝑡

2
(20) 

In equation (20), θlag is the phase shift in radians, ω is frequency in radians per second, and δt is 
the delay time, meaning the delay time between sampling and updating the PWM duty.  
Sandwiched within the delay are the ADC sequence, filter computation, and other processing 
overhead.  Some gain and phase margin are required in feedback control systems to ensure 
reliable operation in the presence of perturbation (noise) and mismatches between system 
modeling and reality.  The frequency of interest for ω is when the gain of the open-loop 
transfer function (plant plus filter) drops to unity (0 dB on a Bode plot).  A desirable range for 
phase margin at this frequency is 45 to 60 degrees. 

If the ADC sampling is initiated by the pulse width modulation (PWM) interrupt service routing 
(ISR) in a microcontroller, and filter computations are made in the PWM ISR, then the PWM ISR 
frequency is the sampling frequency, and its inverse is the sampling period T, which is equal to 
δt in equation (20).  This is actually a worst-case scenario, for which the phase lag is 𝜃𝑙𝑎𝑔 =

𝜔𝑐𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟 ∙
𝑇

2
.  For example, suppose the sampling frequency is 10x the unity-gain crossover

frequency, then the phase lag introduced by the sampling-to-update delay would be 𝜑𝑙𝑎𝑔 =

2𝜋𝑓𝑐𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟 ∙
𝑇

2
= 2𝜋

1

10𝑇
∙

𝑇

2
=

𝜋

10
= 0.314 rad, or 18 degrees.  There are techniques and features 

for microcontrollers that can reduce the delay compared to this example.  The point is that 
additional phase margin must be added before performing the bilinear transform to account for 
delays within the digital feedback control system.  Alternatively, these delays can be accounted 

The result of the bilinear 
transform is basic arithmetic 
that is quickly computed. 
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for in a discrete-time model of the control system, which is beyond the scope of this application 
note. 
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Appendix – Formulas for Calculation of Z-Domain Coefficients 

In the following formulas, K is a substitution variable to be replaced with 
2

𝑇
 without pre-warping, 

and with 
𝜔0

tan(𝜔0
𝑇

2
)
 to pre-warp at the angular frequency ω0. 

First Order 

𝐻𝑎(𝑠) =
𝐵1𝑠 + 𝐵0

𝐴1𝑠 + 𝐴0
→ 𝐻𝑑(𝑧) =

𝐵1𝐾
𝑧 − 1
𝑧 + 1

+ 𝐵0

𝐴1𝐾
𝑧 − 1
𝑧 + 1

+ 𝐴0

=
(𝐵0 + 𝐵1𝐾)𝑧 + 𝐵0 − 𝐵1𝐾

(𝐴0 + 𝐴1𝐾)𝑧 + 𝐴0 − 𝐴1𝐾
= 

𝐵0 + 𝐵1𝐾
𝐴0 + 𝐴1𝐾

+
𝐵0 − 𝐵1𝐾
𝐴0 + 𝐴1𝐾

𝑧−1

1 +
𝐴0 − 𝐴1𝐾
𝐴0 + 𝐴1𝐾

𝑧−1

𝐻𝑑(𝑧) =
𝑏0 + 𝑏1𝑧−1

𝑎0 + 𝑎1𝑧−1

𝑏0 =
𝐵0 + 𝐵1𝐾

𝐴0 + 𝐴1𝐾
𝑎0 = 1 

𝑏1 =
𝐵0 − 𝐵1𝐾

𝐴0 + 𝐴1𝐾
𝑎1 =

𝐴0 − 𝐴1𝐾

𝐴0 + 𝐴1𝐾

𝑦(𝑘) = 𝑏0𝑥(𝑘) + 𝑏1𝑥(𝑘 − 1) − 𝑎1𝑦(𝑘 − 1) 
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Second Order 

𝐻𝑎(𝑠) =
𝐵2𝑠2 + 𝐵1𝑠 + 𝐵0

𝐴2𝑠2 + 𝐴1𝑠 + 𝐴0
→ 𝐻𝑑(𝑧) =

𝐵2 (𝐾
𝑧 − 1
𝑧 + 1

)
2

+ 𝐵1𝐾
𝑧 − 1
𝑧 + 1

+ 𝐵0

𝐴2 (𝐾
𝑧 − 1
𝑧 + 1

)
2

+ 𝐴1𝐾
𝑧 − 1
𝑧 + 1

+ 𝐴0

= 

(𝐵0 + 𝐵1𝐾 + 𝐵2𝐾2)𝑧2 + (2𝐵0 − 2𝐵2𝐾2)𝑧 + 𝐵0 − 𝐵1𝐾 + 𝐵2𝐾2

(𝐴0 + 𝐴1𝐾 + 𝐴2𝐾2)𝑧2 + (2𝐴0 − 2𝐴2𝐾2)𝑧 + 𝐴0 − 𝐴1𝐾 + 𝐵2𝐾2 = 

𝐵0 + 𝐵1𝐾 + 𝐵2𝐾2

𝐴0 + 𝐴1𝐾 + 𝐴2𝐾2 +
2𝐵0 − 2𝐵2𝐾2

𝐴0 + 𝐴1𝐾 + 𝐴2𝐾2 𝑧−1 +
𝐵0 − 𝐵1𝐾 + 𝐵2𝐾2

𝐴0 + 𝐴1𝐾 + 𝐴2𝐾2 𝑧−2

1 +
2𝐴0 − 2𝐴2𝐾2

𝐴0 + 𝐴1𝐾 + 𝐴2𝐾2 𝑧−1 +
𝐴0 − 𝐴1𝐾 + 𝐴2𝐾2

𝐴0 + 𝐴1𝐾 + 𝐴2𝐾2 𝑧−2

𝐻𝑑(𝑧) =
𝑏0 + 𝑏1𝑧−1 + 𝑏2𝑧−2

𝑎0 + 𝑎1𝑧−1 + 𝑎2𝑧−2

𝑏0 =
𝐵0 + 𝐵1𝐾 + 𝐵2𝐾2

𝐴0 + 𝐴1𝐾 + 𝐴2𝐾2
𝑎0 = 1 

𝑏1 =
2𝐵0 − 2𝐵2𝐾2

𝐴0 + 𝐴1𝐾 + 𝐴2𝐾2 𝑎1 =
2𝐴0 − 2𝐴2𝐾2

𝐴0 + 𝐴1𝐾 + 𝐴2𝐾2

𝑏2 =
𝐵0 − 𝐵1𝐾 + 𝐵2𝐾2

𝐴0 + 𝐴1𝐾 + 𝐴2𝐾2
𝑎2 =

𝐴0 − 𝐴1𝐾 + 𝐴2𝐾2

𝐴0 + 𝐴1𝐾 + 𝐴2𝐾2

𝑦(𝑘) = 𝑏0𝑥(𝑘) + 𝑏1𝑥(𝑘 − 1) + 𝑏2𝑥(𝑘 − 2) − 𝑎1𝑦(𝑘 − 1) − 𝑎2𝑦(𝑘 − 2) 
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Third Order 

𝐻𝑎(𝑠) =
𝐵3𝑠3 + 𝐵2𝑠2 + 𝐵1𝑠 + 𝐵0

𝐴3𝑠3 + 𝐴2𝑠2 + 𝐴1𝑠 + 𝐴0
→ 𝐻𝑑(𝑧) =

𝐵3 (𝐾
𝑧 − 1
𝑧 + 1

)
3

+ 𝐵2 (𝐾
𝑧 − 1
𝑧 + 1

)
2

+ 𝐵1𝐾
𝑧 − 1
𝑧 + 1

+ 𝐵0

𝐴3 (𝐾
𝑧 − 1
𝑧 + 1

)
3

+ 𝐴2 (𝐾
𝑧 − 1
𝑧 + 1

)
2

+ 𝐴1𝐾
𝑧 − 1
𝑧 + 1

+ 𝐴0

𝐻𝑑(𝑧) =
𝑏0 + 𝑏1𝑧−1 + 𝑏2𝑧−2 + 𝑏3𝑧−3

𝑎0 + 𝑎1𝑧−1 + 𝑎2𝑧−2 + 𝑎3𝑧−3

𝑏0 =
𝐵0 + 𝐵1𝐾 + 𝐵2𝐾2 + 𝐵3𝐾3

𝐴0 + 𝐴1𝐾 + 𝐴2𝐾2 + 𝐴3𝐾3
𝑎0 = 1 

𝑏1 =
3𝐵0 + 𝐵1𝐾 − 𝐵2𝐾2 − 3𝐵3𝐾3

𝐴0 + 𝐴1𝐾 + 𝐴2𝐾2 + 𝐴3𝐾3 𝑎1 =
3𝐴0 + 𝐴1𝐾 − 𝐴2𝐾2 − 3𝐴3𝐾3

𝐴0 + 𝐴1𝐾 + 𝐴2𝐾2 + 𝐴3𝐾3

𝑏2 =
3𝐵0 − 𝐵1𝐾 − 𝐵2𝐾2 + 3𝐵3𝐾3

𝐴0 + 𝐴1𝐾 + 𝐴2𝐾2 + 𝐴3𝐾3 𝑎2 =
3𝐴0 − 𝐴1𝐾 − 𝐴2𝐾2 + 3𝐴3𝐾3

𝐴0 + 𝐴1𝐾 + 𝐴2𝐾2 + 𝐴3𝐾3

𝑏3 =
𝐵0 − 𝐵1𝐾 + 𝐵2𝐾2 − 𝐵3𝐾3

𝐴0 + 𝐴1𝐾 + 𝐴2𝐾2 + 𝐴3𝐾3 𝑎3 =
𝐴0 − 𝐴1𝐾 + 𝐴2𝐾2 − 𝐴3𝐾3

𝐴0 + 𝐴1𝐾 + 𝐴2𝐾2 + 𝐴3𝐾3

𝑦(𝑘) = 𝑏0𝑥(𝑘) + 𝑏1𝑥(𝑘 − 1) + 𝑏2𝑥(𝑘 − 2) + 𝑏3𝑥(𝑘 − 3) − 𝑎1𝑦(𝑘 − 1) − 𝑎2𝑦(𝑘 − 2) − 𝑎3𝑦(𝑘 − 3) 
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Fourth Order 

𝐻𝑎(𝑠) =
𝐵4𝑠4 + 𝐵3𝑠3 + 𝐵2𝑠2 + 𝐵1𝑠 + 𝐵0

𝐴4𝑠4 + 𝐴3𝑠3 + 𝐴2𝑠2 + 𝐴1𝑠 + 𝐴0
→ 𝐻𝑑(𝑧)

=
𝐵4 (𝐾

𝑧 − 1
𝑧 + 1

)
4

+ 𝐵3 (𝐾
𝑧 − 1
𝑧 + 1

)
3

+ 𝐵2 (𝐾
𝑧 − 1
𝑧 + 1

)
2

+ 𝐵1𝐾
𝑧 − 1
𝑧 + 1

+ 𝐵0

𝐴4 (𝐾
𝑧 − 1
𝑧 + 1

)
4

+ 𝐴3 (𝐾
𝑧 − 1
𝑧 + 1

)
3

+ 𝐴2 (𝐾
𝑧 − 1
𝑧 + 1

)
2

+ 𝐴1𝐾
𝑧 − 1
𝑧 + 1

+ 𝐴0

𝐻𝑑(𝑧) =
𝑏0 + 𝑏1𝑧−1 + 𝑏2𝑧−2 + 𝑏3𝑧−3 + 𝑏4𝑧−4

𝑎0 + 𝑎1𝑧−1 + 𝑎2𝑧−2 + 𝑎3𝑧−3 + 𝑎4𝑧−4

𝑏0 =
𝐵0 + 𝐵1𝐾 + 𝐵2𝐾2 + 𝐵3𝐾3 + 𝐵4𝐾4

𝐴0 + 𝐴1𝐾 + 𝐴2𝐾2 + 𝐴3𝐾3 + 𝐴4𝐾4
𝑎0 = 1 

𝑏1 =
4𝐵0 + 2𝐵1𝐾 − 2𝐵3𝐾3 − 4𝐵4𝐾4

𝐴0 + 𝐴1𝐾 + 𝐴2𝐾2 + 𝐴3𝐾3 + 𝐴4𝐾4 𝑎1 =
4𝐴0 + 2𝐴1𝐾 − 2𝐴3𝐾3 − 4𝐴4𝐾4

𝐴0 + 𝐴1𝐾 + 𝐴2𝐾2 + 𝐴3𝐾3 + 𝐴4𝐾4

𝑏2 =
6𝐵0 − 2𝐵2𝐾2 + 6𝐵4𝐾4

𝐴0 + 𝐴1𝐾 + 𝐴2𝐾2 + 𝐴3𝐾3 + 𝐴4𝐾4 𝑎2 =
6𝐵0 − 2𝐵2𝐾2 + 6𝐵4𝐾4

𝐴0 + 𝐴1𝐾 + 𝐴2𝐾2 + 𝐴3𝐾3 + 𝐴4𝐾4

𝑏3 =
4𝐵0 − 2𝐵1𝐾 + 2𝐵3𝐾3 − 4𝐵4𝐾4

𝐴0 + 𝐴1𝐾 + 𝐴2𝐾2 + 𝐴3𝐾3 + 𝐴4𝐾4 𝑎3 =
4𝐴0 − 2𝐴1𝐾 + 2𝐴3𝐾3 − 4𝐴4𝐾4

𝐴0 + 𝐴1𝐾 + 𝐴2𝐾2 + 𝐴3𝐾3 + 𝐴4𝐾4

𝑏4 =
𝐵0 − 𝐵1𝐾 + 𝐵2𝐾2 − 𝐵3𝐾3 + 𝐵4𝐾4

𝐴0 + 𝐴1𝐾 + 𝐴2𝐾2 + 𝐴3𝐾3 + 𝐴4𝐾4 𝑎4 =
𝐴0 − 𝐴1𝐾 + 𝐴2𝐾2 − 𝐴3𝐾3 + 𝐴4𝐾4

𝐴0 + 𝐴1𝐾 + 𝐴2𝐾2 + 𝐴3𝐾3 + 𝐴4𝐾4

𝑦(𝑘) = 𝑏0𝑥(𝑘) + 𝑏1𝑥(𝑘 − 1) + 𝑏2𝑥(𝑘 − 2) + 𝑏3𝑥(𝑘 − 3) + 𝑏4𝑥(𝑘 − 4) − 𝑎1𝑦(𝑘 − 1) − 𝑎2𝑦(𝑘 − 2)
− 𝑎3𝑦(𝑘 − 3) − 𝑎4𝑦(𝑘 − 4)
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