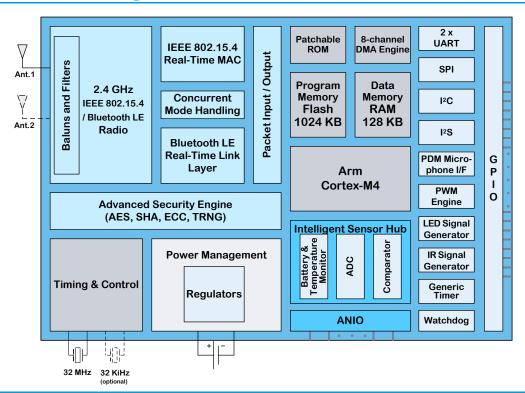


Data Sheet

1 Product Overview


The QPG6105 is a multi-standard Smart Home communications controller supporting Zigbee, Thread, Matter™, Bluetooth® Low Energy and Bluetooth® Mesh, enabling greater interoperability and scalability.

It features ConcurrentConnect[™] technology enabling multiple protocols to operate simultaneously, delivering improved capacity and enhanced interoperability with the leading low power standards.

- ConcurrentConnect Multi-Radio capability allows continuously scanning for incoming packets across
 Bluetooth Low Energy and IEEE 802.15.4 protocols with no observable blind spots.
- Patented ConcurrentConnect Antenna Diversity enables increased effective range.
- ConcurrentConnect Multi-Channel capability allows operating in up to 3 PANs on different channels.
- Simplify Gateway dependencies by bridging Zigbee, Thread and/or Bluetooth Mesh networks.
- Enhanced security capabilities enable highly secure solution with built in support for secure boot, secure OTA software upgrade and secure identity.
- Optimized connected lighting design BOM, reducing the number of components and PCBs in the design.
- Qorvo's turn-key development kits include complete software applications and hardware designs; enabling quick development of Connected Lighting and Smart Home products.
- Designed for low power IoT end node applications such as:
 - o Connected Lighting o Sensors o Smart Plugs o Thermostats o Wearables

2 Functional Block Diagram

3 Key Features

Radio

- ✓ Operates in the worldwide 2.4 GHz ISM-band
- ✓ Integrated baluns and RF filters
- ✓ In 1 dB steps, programmable transmitter output power up to +10 dBm
- Targeting compliance with worldwide RF regulations: ETSI EN 300 328 (Europe), FCC CFR47 Part 15 (US), and ARIB STD-T-66 (Japan)

IEEE 802.15.4 compliant PHY and Real-Time MAC

- Preamble-based ConcurrentConnect Antenna Diversity
- ✓ Packet-in-Packet resynchronization
- ConcurrentConnect Multi-Channel capability, operating in up to 3 PANs on different channels

Bluetooth v 5.3 compliant Low Energy Controller

- ✓ Enhanced Data Rate (2 Mbits/s)
- ✓ Link Layer Privacy and Advertising Extensions
- ✓ Full connection utilization

Multi-Stack Support

- ✓ Multiple IEEE 802.15.4 based stacks MAC API
- ✓ Bluetooth Low Energy HCI

Dynamic Multi-Protocol

- Hardware accelerated Dynamic Multi-Protocol Bluetooth Low Energy and IEEE 802.15.4 communications
- → Allows combining Bluetooth Low Energy Peripheral with any type of Zigbee/Matter-over-Thread device

ConcurrentConnect Multi-Radio capability

- ✓ Concurrent IEEE 802.15.4 and Bluetooth listening
- → Allows combining Bluetooth Low Energy Central/Observer or Mesh Node with Zigbee/Matter-over-Thread router

Advanced Security Engine

- Hardware accelerated AES and CCM/CCM* encryption and decryption with 128, 192 and 256bit keys
- ✓ Hashing engine: SHA-128, SHA-2 (SHA-256, SHA-512)
- ✓ Public Key Crypto: Elliptic Curve; support for ECDSA, ECDH, P256, Curve25519, J-Pake, ECMQV, EdDSA, etc.
- ✓ Cryptographic Random Number Generator

Built-in Security Features

- ✓ Secure boot
- ✓ Secure OTA software upgrades
- ✓ Secure identity

Integrated Microcontroller

- Arm® Cortex®-M4 processor with DSP functionality
- Up to 64 MHz clock speed

Memory

- √ 1 Mbyte Flash Program memory
- ✓ Patchable ROM for Flash offload
- √ 128 Kbyte Low Leakage Retention RAM
- √ 8-Channel DMA Engine

Peripherals and Interfaces

- ✓ Up to 23 Programmable GPIO lines
- Up to 4 Analog input lines
- Full internal IO pull-up / pull-down support during active and standby states
- ✓ Two UART interfaces
- ✓ SPI Master and Slave interfaces
- √ I²C Master and Slave interfaces
- √ I²S Master/Slave interface for digital audio devices
- ✓ PDM Microphone Interface
- ✓ PWM Engine (16-bit PWM) for 8 outputs
- ✓ LED Signal Generator (8-bit PWM) with fading support for 4 signaling LEDs
- ✓ IR Signal Generator
- √ 10/12-bit ADC to monitor the ANIO pins, the power supply level and the temperature
- ✓ Low power comparator

Power Management

- ✓ Operating voltage range: 1.8 ... 3.6V
- Integrated Regulators
- ✓ Low power standby modes:

Using internal LjRC oscillator: $0.9 \mu A$ Using 32 MHz crystal oscillator: $765 \mu A$ Using 32 KiHz crystal oscillator: $1.6 \mu A$

✓ Data and state retention in all standby modes

Dimensions and Layout

- ✓ QFN32, 4x4 mm package (0.4 mm pitch)
- ✓ Supports direct interfacing with printed antennas
- ✓ No RF shielding required

Environmental Aspects

✓ RoHS compliant

4 Ordering Information

Part Number	Chip Package	Flash	RAM	Packing	Unit Quantity (number of chips)	Box Dimensions
QPG6105TR13	QFN32	1 Mbyte	128 Kbyte	13" Tape and Reel	4500	37 x 35 x 8 cm
QPG6105SR	QIIIOZ	1 Wibyte	120 Rbyto	7" Tape and Reel	100	

Table of Contents

l	Produc	ct Overview	1
2	Function	onal Block Diagram	1
3	Key Fe	eatures	2
1	•	ng Information	
5		onal Description	
•		4 GHz Radio	
	5.1.1	RF Ports with Integrated Switch, Matching and Filters	5
	5.1.2	Radio Configurations	5
	5.1.3	RSSI	
	5.1.4	Transmit Power Control	.6
		EE 802.15.4 Communications	6
	5.2.1	2.4 GHz IEEE 802.15.4 Transceiver	6
	5.2.2	ConcurrentConnect™ Antenna Diversity	
	5.2.3	Clear Channel Assessment (CCA)	6
	5.2.4	Packet-in-Packet Resynchronization	6
	5.2.5	Real-Time Medium Access Control (MAC)	/
	5.2.6 5.2.7	Link Quality Indication	/
		uetooth Communications	
	5.3.1	2.4 GHz Bluetooth Low Energy PHY Layer	
	5.3.2	Real-Time Bluetooth Low Energy Link Layer	
	5.3.3	Full Connection Utilization	
		ulti-Stack Support	
		W-Accelerated Dynamic Multi-Protocol Support	
		oncurrentConnect™ Multi-Radio Capability	
	5.7 Ad	dvanced Security Engine	8
		uilt-in Security Features	
		acket Input Output (PIO)	
		emory Architecture	
		ternal Microcontroller	
		eripherals	
		IO Pins	
		UARTsSPI Master	
		SPI Slave	
		I ² C Master	
		I ² C Slave	
		I ² S Master/Slave	
		IR Signal Generator	
		LED Signal Generator	
		OPDM Microphone Interface	
		1 PWM Engine	
		2 Generic Timer	

5.12.13 Watchdog	
5.12.14 Intelligent Sensor Hub	13
5.12.15 Clock Output	14
5.13 Timing and Control	14
5.13.1 Oscillator Settings	15
5.13.2 Standby Modes	
5.14 Power Management	16
5.14.1 Low Voltage Behavior	
S Electrical Characteristics	
6.1 Absolute Maximum Ratings	
6.2 Recommended Operating Conditions	
6.3 Current Consumption	
6.4 Receiver Characteristics	
6.5 Transmitter Characteristics	
6.6 Digital Timing Characteristics	
6.7 Reset, Wake up and Standby Timing Characteristics	
6.8 Flash Memory Characteristics	
6.9 Crystal Oscillator Specifications	30
6.9.1 The 32 MHz Crystal Oscillator	
6.9.2 The 32 KiHz Crystal Oscillator (optional)	
6.10 Internal Pull-up / Pull-down Characteristics	
6.11 ADC Characteristics	
6.12 Battery / Temperature Monitor Characteristics	
6.13 Comparator Characteristics	33
6.14 32 kHz LjRC Oscillator Characteristics	33
7 Application Circuit	
3 Application Programming Information	
8.1 Multi-Protocol Support	
• •	
9 Flash Programming and Configuration	
9.1 SPI Programming Interface	
9.2 UART Programming Interface	
10 Debug Mode	
11 Device Information	37
11.1 QFN32 Package	37
11.1.1 QFN32 Pin Assignments	
11.1.2 QFN32 Package Drawings	
11.1.3 QFN32 Package Information	
11.1.4 QFN32 Thermal Characteristics	
11.1.5 QFN32 Tape and Reel Information	
11.2 Moisture/Reflow Sensitivity	
11.3 RoHS Compliance	48
12 Errata	49
12.1 Spurious External Event	49
Abbreviations	50
mportant Notices	
Product Status	
Document History	52

5 Functional Description

5.1 2.4 GHz Radio

The QPG6105 radio transceiver provides all the functionality for the Physical layer (PHY) for both the IEEE 802.15.4 and the Bluetooth communications.

This section describes the generic features; following sections describe the specific features for IEEE 802.15.4 and Bluetooth.

5.1.1 RF Ports with Integrated Switch, Matching and Filters

The QPG6105 has two antenna ports with integrated switch, matching and RF filters. The antenna ports output is Ω single ended. Optionally the outputs can be combined to one 200 Ω differential output.

5.1.2 Radio Configurations

The QPG6105 supports several different radio configurations. It can be configured to use a different receive and transmit antenna, or for IEEE 802.15.4 communications it can use antenna diversity (see section 5.2.2). A few sample configurations are depicted below, but others are also possible.

Sample Configuration 1 (Figure 1):

- Single ended 50 Ω antenna
- Using antenna 1 (RF1 pin) for both RX and TX
- Antenna diversity disabled

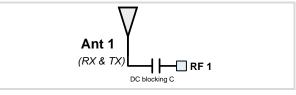


Figure 1: Single Antenna

Sample Configuration 2 (Figure 2):

- 2 Single ended 50 Ω antennas
- TX on same antenna as was selected best by RX
- Antenna diversity enabled (for IEEE 802.15.4)

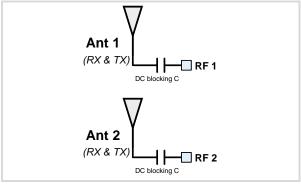


Figure 2: Two Antennas

Sample Configuration 3 (Figure 3):

- Symmetrical antenna
- Antenna diversity disabled

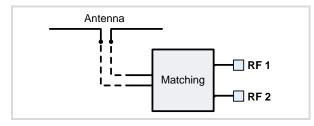


Figure 3: Symmetrical Antenna

5.1.3 **RSSI**

The PHY's RSSI circuitry measures the received signal energy level and this value is converted to dBm values in the Hardware Abstraction Layer (HAL). See Receiver Characteristics (6.4 below) for the range and accuracy.

5.1.4 Transmit Power Control

The QPG6105 can be configured for two transmitter output power modes:

- Low power mode; TX output power up to 7 dBm
- High power mode; TX output power up to 10 dBm

The transmitter output power is configured by software, in steps of 1 dB.

5.2 IEEE 802.15.4 Communications

5.2.1 2.4 GHz IEEE 802.15.4 Transceiver

The QPG6105 radio is compliant with the IEEE 802.15.4 standard as required for supporting Zigbee and Thread.

The QPG6105 supports all the IEEE Standard 802.15.4 defined channels in the 2.4 GHz ISM license-free frequency band (channels 11 .. 26).

The channel number (k) and center frequency (F_c) relate as follows: $F_c = 2405 + 5(k - 11)$ in MHz

5.2.2 ConcurrentConnect™ Antenna Diversity

IEEE 802.15.4 Preamble based Antenna Diversity enables the PHY to choose the optimal antenna for every individual packet, and increases the performance of the receiver in environments that are dominated by multipath fading effects and interference situations. In receive mode the PHY selects the antenna based on the best signal quality (signal-to-noise/interference ratio).

For typical indoor usage in an environment with 50 ns delay-spread and 2 MHz signal bandwidth using the Rayleigh fading model, antenna diversity with 2 antennas results in a ~8 dB improved link budget (at a 1% outage probability) compared to no antenna diversity. This translates into 70% more reliable range (using a log-distance breakpoint model¹ with path loss coefficients g1=2 (free space propagation) and g2=3.5 above the breakpoint at 10 m).

Unless configured otherwise, the QPG6105 will use the same antenna for transmission as the one that was used for the reception of the last packet.

5.2.3 Clear Channel Assessment (CCA)

The PHY can perform a clear channel assessment (CCA) to avoid collisions. The IEEE 802.15.4 standard defines 3 CCA methods; the QPG6105 supports:

CCA mode 1, **Energy Detect (ED)**: The medium is considered busy when the measured energy in the selected channel is above a certain threshold. This CCA threshold is programmable.

CCA mode 3, **Energy Detect (ED) and Carrier Sense (CS)**: The medium is considered busy when a valid IEEE 802.15.4 carrier is detected in the selected channel and the measured energy in the selected channel is above the programmable threshold.

5.2.4 Packet-in-Packet Resynchronization

If the QPG6105 is receiving a packet from one node and is interrupted by the reception of another stronger packet from another node, the receiver will resynchronize to the latter and continue to receive and process this packet. This allows one packet (the strongest) to be received where otherwise both packets would have been lost. Packet-in-Packet collisions can occur in situations when neighbor network packets are received at a low level and in hidden node situations where not all nodes can see each other.

¹ Refer to "T.S. Rappaport, Wireless Communications – Principles & Practice, Prentice Hall, 1996" for this model.

5.2.5 Real-Time Medium Access Control (MAC)

The QPG6105 implements all Zigbee and Thread-required MAC features of the IEEE Standard 802.15.4. The MAC provides a packet-level service to the protocol stack, and handles packet transmissions and receptions autonomously, including:

- Performing CSMA/CA to avoid collisions when transmitting packets;
- Adding CRC and Sequence number;
- Acknowledgement handling for transmitted packets, including automatic retransmissions;
- Option to spread retransmissions over different channels to natively support rf4ce multi-channel acknowledged transmission schemes
- Address recognition and packet filtering on received packets, including CRC checking;
- Acknowledgement handling for received packets, including automatic acknowledge transmission.

5.2.6 Link Quality Indication

In addition to the RSSI, there is also a link quality indication (LQI) determined for each received IEEE 802.15.4 data packet, for use at the network and application layers.

5.2.7 ConcurrentConnect™ Multi-Channel Capability

For the IEEE 802.15.4 communications, the QPG6105 can simultaneously listen for packets on three different PANs (Personal Area Networks) that may be on the same or on different RF channels.

In this way it can support the Zigbee Router role, concurrently with a Thread Router (REED) role, even if these networks run on different RF channels. Or alternatively, it can be used to serve a Zigbee coordinator for up to 3 different ZigBee networks at the same time, each network running on a potentially different RF channel.

5.3 Bluetooth Communications

The QPG6105 implements the Bluetooth Low Energy (LE) Controller functionality, including PHY, Link Layer and Host Controller Interface (HCI) according the Bluetooth Core Specification v 5.3 for Bluetooth Low Energy. When combined with a Bluetooth Low Energy protocol stack (see chapter 8), it supports all GATT-based profiles and services, and it can operate as a Broadcaster, Observer, Central and Peripheral device.

5.3.1 2.4 GHz Bluetooth Low Energy PHY Layer

The QPG6105 implements the Bluetooth LE PHY layer, supporting all the (40) Bluetooth defined frequency channels in the 2.4 GHz ISM license-free frequency band.

The Bluetooth LE Controller supports the following bit-rates:

Basic data rate: 1 Mbit/s, Enhanced data rate: 2 Mbit/s.

Note: The QPG6105 does not support the Long Range Coded PHY and Isochronous Channels (LE Audio).

5.3.2 Real-Time Bluetooth Low Energy Link Layer

The Real-Time Link Layer implements the real-time functions of the Bluetooth LE Link Layer (LL) protocol for the Advertising-, Scanning, Initiating and Connection States. Multi-state operation is supported: a multi-level priority mechanism ensures appropriate scheduling of Advertising, Scanning, Initiating and Connection- events.

In the Connection State, the Real-Time Link Layer maintains the LE Asynchronous Connection-oriented Logical (LE ACL) transport on master and/or slave connections, allowing transfer of control (LE-C) and user (LE-U) data. High-throughput applications are supported via a dedicated queue per (LE ACL) connection, thus ensuring efficient filling of Connection Events.

The QPG6105 supports the maximum PDU payload size of 255 bytes (including MIC), which is the maximum PDU payload size allowed by the Bluetooth Core Specification.

The QPG6105 supports the Link Layer Privacy and Advertising Extensions as defined in the Bluetooth Core Specification v 5.3.

5.3.3 Full Connection Utilization

The QPG6105 has been optimized for audio streaming over Bluetooth Low Energy with a full Bluetooth connection utilization under high CPU load conditions. This implies that the system can fill the complete connection with Bluetooth packets allowing to achieve the maximal bandwidth of the connection, even when the CPU is processing audio (decimation, equalizing, compressing), under a large variety of Bluetooth connection configurations (normal data and high data rate, short and long connection intervals, short and long Bluetooth packets).

5.4 Multi-Stack Support

The QPG6105 can support multiple protocol stacks. Multiple IEEE 802.15.4 based stacks (Zigbee, Thread, proprietary) can interface simultaneously with the QPG6105 MAC API through a MAC Dispatcher, while the Bluetooth Low Energy Stack can interface with the QPG6105 at the Host Controller Interface (HCI) level at the same time.

5.5 HW-Accelerated Dynamic Multi-Protocol Support

The QPG6105 has HW support to seamlessly interleave Bluetooth Low Energy communications (advertisements and Bluetooth connections) with IEEE 802.15.4 communications. The Dynamic Multi-Protocol Support lets the IEEE 802.15.4 MAC autonomously schedule and interleave IEEE 802.15.4 traffic to ensure that Bluetooth connection traffic is maintained without any connection drops.

For use cases where the airtime needs to be divided differently between Bluetooth and IEEE 802.15.4 data transfers, the following additional modes are supported:

- Best effort mode, for non-real-time (bulk) Bluetooth data transfers, where the Bluetooth LE controller frees up airtime in the connection when an IEEE 802.15.4 data packet is queued.
- Controlled bandwidth mode, for real-time (streaming) Bluetooth data transfers, where the Bluetooth LE controller reserves a portion of the connection for IEEE 802.15.4 communication.

This feature can be combined with Multi-Channel Support to support three IEEE 802.15.4 stacks, while simultaneously acting as a Bluetooth Low Energy peripheral and maintain a Bluetooth connection with a smartphone.

5.6 ConcurrentConnect™ Multi-Radio Capability

The QPG6105 can concurrently listen to one IEEE 802.15.4 RF channel, and one Bluetooth advertisement channel.

In this way it can combine a Zigbee Router role with Bluetooth Low Energy Central/Observer role. Another example would be the combination of a (Matter over) Thread Router role with a Bluetooth Low Energy Mesh Node.

Note: ConcurrentConnect listening mode applies to Bluetooth **advertisement** channels and hence to the 1 Mbit/s data rate. It does not apply to 2 Mbit/s data rate as that is not used for advertisement channels.

5.7 Advanced Security Engine

The QPG6105 is equipped with a low power Advanced Security Engine that can work independently from the PHY and MAC.

The Advanced Security Engine supports:

- Hardware accelerated AES and CCM/CCM* encryption and decryption with 128, 192 and 256-bit keys
 Note: For Zigbee and Thread the 128-bit CCM* is used. For Bluetooth Low Energy the 128-bit CCM is used.
- Hashing: SHA-128, SHA-2 (SHA-256, SHA-512)
- Public Key Cryptography: Elliptic Curve
 - o Support for ECDSA, ECDH, P256, Curve25519, J-Pake, ECMQV, EdDSA, etc.
- Cryptographic Random Number Generation, designed for compliance with NIST-800-90B

5.8 Built-in Security Features

The QPG6105 has the following built-in security features:

- Secure boot from ROM
- Secure OTA upgrade support
- Secure Debug provisions
- Secure Key Storage
 - Secure Key Load
 - o Secure Symmetric Key Generation
 - o Secure Public/Private Key Pair Generation
- Secure Identity support

5.9 Packet Input Output (PIO)

The Packet Input Output (PIO) controls the exchange of primitives and packets between the microcontroller and the 802.15.4 Real-Time MAC, as well as the exchange of (LE-C and LE-U) packets between the microcontroller and the Bluetooth LE Real-Time Link Layer. Information about a packet or other primitive parameters is stored in Packet Buffer Memory (PBM), a reserved region of the RAM that can hold information for up to 32 packets. The number of packets is software configurable; the application needs to make sure there are sufficient PBMs available to meet the requirements. These PBM entries are shared between the 802.15.4 MAC (RX & TX) and Bluetooth (RX & TX) functions.

5.10 Memory Architecture

The QPG6105 contains:

128 Kbyte RAM: Low Leakage Random Access Memory (RAM), for packet buffering and run-time data. This is split in:

32 Kbyte is System RAM, accessible to the internal microcontroller and other functional blocks, and 96 Kbyte is MCU RAM, accessible to the internal microcontroller only.

The contents of the RAM can be retained (or partially retained) during standby modes but is cleared when a Power-On-Reset (POR) occurs.

Table	1: RAN	I Retention	Options
-------	--------	-------------	---------

RAM Block Size	RAM Block Type	Total RAM Retained	Retained RAM Type
8 Kbyte	System RAM	8 Kbyte	System RAM
24 Kbyte	System RAM	32 Kbyte	System RAM
32 Kbyte	MCU RAM	64 Kbyte	System RAM + MCU RAM
32 Kbyte	MCU RAM	96 Kbyte	System RAM + MCU RAM
32 Kbyte	MCU RAM	128 Kbyte	System RAM + MCU RAM

1 Mbyte Flash: Flash memory, for program storage, calibration data and non-volatile storage of critical runtime data (e.g. pairing information and frame counters). The contents are retained under all circumstances (power-on-reset, standby).

ROM: Integrated patchable ROM (256 Kbyte) to provide off-load functionality to significantly reduce the Flash code footprint. Items included in ROM are:

- Security Primitives
- o Core SW modules and functions: Scheduler; HAL; Bluetooth LE Controller; IEEE 802.15.4 MAC
- Matter-specific offload: Bluetooth LE Host; NVM SW module

DMA Engine : The QPG6105 has an 8-channel DMA Engine that relieves the microcontroller from transferring data internally between RAM and peripherals.

5.11 Internal Microcontroller

The internal microcontroller allows the QPG6105 to operate as a standalone system. It is a high performance 32-bit Arm Cortex-M4 processor with DSP functionality, optimized for low power consumption, performance, and code size.

It runs at up to 64 MHz clock speed, and can execute code from Flash as well as from RAM, with zero wait states.

Table 2: Memory Access Speeds

Arm clock	MCU RAM access	System RAM access	ROM access	Flash Memory access
32 MHz	32 MHz	32 MHz	32 MHz	32 MHz for linear code; 16 MHz worst case
64 MHz	64 MHz	32 MHz	32 MHz	42 MHz for linear code; 16 MHz worst case

5.12 Peripherals

The QPG6105 features a set of peripherals and allows configuration of the mapping between the IO signals needed by the peripherals and the available IO pins.

5.12.1 IO Pins

The QPG6105 features many IO pins that can be configured to predefined functional signals; see the Pin Assignments in chapter 11:

- 17 programmable General Purpose IO (GPIO) lines, plus
- 4 programmable Analog IO (ANIO) or GPIO lines (of which 2 input only), plus
- 2 pins for the optional 32 KiHz crystal IO can alternatively be used as GPIO (input only) lines.

The whole pin configuration with associated settings is retained when going to standby.

5.12.1.1 GPIO

The QPG6105 features programmable GPIO lines that are mapped individually to functional signals, as specified in the Pin Assignments in chapter 11 (Table 30), with following settings:

Pin pull-up/down settings: Except for GPIO19 and GPIO20, the GPIO pins can be individually weakly pulled up or weakly pulled down during active as well as standby states.

Except for GPIO19, GPIO20, GPIO21 and GPIO22, the GPIO pins can be individually configured for bus-keeper.

Unless specified otherwise, at power-up/reset all GPIO pins are default set in floating mode.

Drive strength: The drive strength of the GPIO output pins can be configured per group of 4 IO's (GPIO0 ... GPIO3, GPIO4 ... GPIO7, etc.; see also Table 30) to 4.5, 9, 13.5 or 18 mA.

Wake up: All GPIO pins can be configured as **wake-up** pin. Each of these can be configured to trigger a wake-up event on a rising edge, on a falling edge or on both edges seen on the pin.

5.12.1.2 ANIO

The QPG6105 features up to 4 ANIO lines for inputs to the ADC. ANIO0 and ANIO1 are the preferred ones as they are protected from potential interference by output signals. ANIO0 and ANIO1 can also be used for differential measurements.

5.12.2 **UARTs**

The QPG6105 contains two Universal Asynchronous Receiver and Transmitters (UARTs) for interfacing with additional peripheral devices and/or for terminal logging during (software) development. The UARTs support:

- Full-duplex operation.
- Baud rates from 488 Bd to 2 MBd.
- Serial frames with 5, 6, 7, 8 or 9 data bits and 1 or 2 stop bits, with framing error detection.
- · Odd or even parity generation and checking.
- Buffer overflow detection.
- False start bit detection and digital low pass filter for robustness against noise.
- Separate interrupts on TX Complete, TX Data Register Empty and RX Complete.
- Configurable pin mappings; i.e. a RX pin and a TX pin can be made available on the pin-out.

5.12.3 SPI Master

The QPG6105 contains a Serial Peripheral Interface (SPI) for interfacing with additional peripheral devices. This SPI Master supports:

- Full-duplex synchronous transfers on three lines (MISO, MOSI, SCLK).
- Programmable clock polarity and phase, supports SPI mode 0, 1, 2 and 3.
- Programmable data order with MSb-first or LSb-first shifting.
- High speed clock generator supporting clock speeds up to 32 MHz.
- 4-bit to 16-bit transfer frame format selection.
- Three separate interrupts on TX Complete, TX Data Register Empty and RX Complete.

5.12.4 SPI Slave

The QPG6105 contains an SPI Slave interface. This SPI Slave supports:

- SPI mode 0
- SPI clock frequencies up to 16 MHz
- Limited to byte-based operation

5.12.5 I²C Master

The QPG6105 contains an I²C (Inter-Integrated Circuit) Master interface, also referred to as Two-Wire Interface (TWI), for interfacing with additional peripheral devices. This I²C Master supports:

- Standard mode and Fast mode
- Short (7-bit) and long (10-bit) addresses
- General call address (0x00)
- Clock stretching

5.12.6 I²C Slave

The QPG6105 contains an I²C Slave interface. This I²C Slave supports:

- Standard mode and Fast mode
- Short (7-bit) and long (10-bit) addresses
- Configurable Slave Address
- General call address (0x00)

5.12.7 I²S Master/Slave

The QPG6105 contains an I²S (Inter-IC Sound) Master/Slave interface for interfacing with digital audio devices. This I²S Master/Slave supports:

- Full duplex transfers
- Configurable word length
- · Left justified. Right justified mode can be emulated
- Double buffered, DMA capable
- Master clock frequency selectable from 62.5 kHz up to 8 MHz
- External Slave clock input supporting speeds up to 4 MHz

5.12.8 IR Signal Generator

The QPG6105 has an InfraRed (IR) signal generator. The IR signal generator supports a wide range of common IR protocols.

The IR generator supports multiple modulation modes:

Pattern based: input is a pattern of 0's and 1's in RAM.
Time based: input is a sequence of ON and OFF times.
Event based: modulation is controlled by scheduled actions.

5.12.9 LED Signal Generator

The QPG6105 supports up to 4 signaling LEDs, with configurable function and events. The LED signal generator supports:

- 8-bit Pulse-Width Modulation (PWM)
- Fade-in/Fade-out
- · Duty cycling to adjust brightness and save power

5.12.10 PDM Microphone Interface

The QPG6105 contains a Pulse-Density Modulation (PDM) MEMS Microphone Interface, that supports:

- A Clock and Data pin for interfacing with a PDM MEMS microphone
- Optionally Capturing Data on the Rising and Falling Edge of the Clock for Stereo operations.
- Frequency of Clock signal: 2 MHz.
- HW CIC Decimation filter with programmable decimation factor (R=1...64) that converts 1-bit input samples to 16-bit output samples. HW CIC output can be connected to DMA, to allow this processing chain to be extended with further decimation, equalization, volume control and compression using the Cortex M4 DSP routines.

5.12.11 PWM Engine

The QPG6105 contains a Pulse-Width Modulation (PWM) engine, for e.g. the backlight of a display or for a speaker output, that supports:

- 16-bits real-time timer. (Note that the Event Scheduler contains a timer with a much longer time base; see section 5.13 below)
- 16-bit PWM
- Configuration of the modulation parameters
- Support for 8 PWM outputs.

5.12.12 Generic Timer

The Generic Timer supports:

- 16-bits real-time timer. (Note that the Event Scheduler contains a timer with a much longer time base; see section 5.13 below)
- The option to take a timestamp whenever a selected input pin changes state. This can typically be used for IR learning purposes.
 - Support for 4 timestamp inputs.
 - o Input pin selection.
 - o Hysteresis capable preprocessing.

5.12.13 Watchdog

The QPG6105 contains a Watchdog timer that serves to detect and resolve software failures and to trigger an interrupt, an internal microcontroller reset or a system reset when the timer reaches a certain timeout value. Timeout values are software configurable: 16-bit values in 16 µs resolution.

5.12.14 Intelligent Sensor Hub

The QPG6105 supports an Intelligent Sensor Hub mode for ultra-short measurement cycles for battery operated sensors, ensuring minimal battery usage for these measurements. Upon wake up from standby mode (see also section 5.13 below) measurements and calculations can be performed running on the internal system clock to determine quickly whether the system should be fully woken up (e.g. for radio transmission, requiring the 32 MHz crystal oscillator) or can go back to standby. This whole cycle is intended to take less than 100 µs.

Through software configuration, all analog input channels (ANIO, see section 5.12.1) can be connected to the ADC and to the Comparator. The battery and temperature monitor signals can also be connected to the ADC.

5.12.14.1 ADC

The QPG6105 has an integrated ADC module that can be used to monitor external analog signals via the ANIO pins (see section 5.12.1.2) as well as the power supply level and temperature.

- ANIO0 and ANIO1 can be used for differential measurements.
- The ADC runs on 4 MHz clock speed. A total of 16 cycles are needed to obtain a conversion result.

Table 22 in section 6.11 provides the ADC's accuracy and other characteristics.

5.12.14.2 Battery / Temperature Monitor

The ADC can be configured by software to monitor the power supply level and/or temperature internally; no external components are required. The power supply level and temperature are measured separate from the ANIO pins.

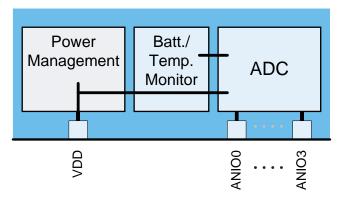


Figure 4: Battery / Temperature Monitor

5.12.14.3 Comparator

The QPG6105 features a low power comparator that can be used to trigger events to wake up the chip and/or trigger an action. The low power analog comparator can be connected to analog input(s). It supports 4 slots, allowing for time multiplexed measurements on different channels and with different threshold configurations. The comparator can be configured to combine such measurements to 'windowed' events (i.e. value is between two configurable levels).

5.12.15 Clock Output

The QPG6105 can provide a clock to peripheral devices (CLK_OUT). The clock frequency is derived from the 32 MHz crystal oscillator system clock. It can be configured for:

- 1, 2, 4, or 8 MHz clock with 50% duty cycle
- 16 MHz pulse blanked clock.

5.13 Timing and Control

The QPG6105 is designed to work in an environment where low power consumption is very important. To achieve the low power consumption in between receive and transmission cycles, the QPG6105 can be put in a standby (or sleep) state.

Following are the reasons for the QPG6105 to wake up:

- An event is detected on one of the IO lines (falling edge or rising edge).
- The voltage of an analog IO goes over or under a configurable threshold.
- It is time for a scheduled action.

The QPG6105 features a highly accurate and adaptive timing engine. The time base spans up to 30 minutes with a 1 µs resolution and can be maintained during the standby modes. It can be used to autonomously and periodically schedule actions listed below in a just-in-time manner, improving the overall energy consumption of the system:

- Transmission of a packet from a TX queue.
- Enabling/disabling the receiver.
- Switch on/off IR modulation
- Trigger ADC measurement cycle
- Trigger analog measurements
- Interrupt and wake up the microcontroller.

5.13.1 Oscillator Settings

The QPG6105 includes the following oscillators:

- **32 MHz crystal oscillator**, based on the required external 32 MHz crystal. This is used as main system clock and reference frequency to obtain the desired RF performance.
- Internal system clock. This internal clock generator is used for fast start-up and initial processing. Its frequency

is close to 32 MHz but its frequency accuracy is insufficient for RF performance. It can also be used for the Intelligent Sensor Hub, enabling minimum wake-up time to perform

analog measurements.

32 kHz LjRC oscillator. This internal low jitter RC oscillator is designed to support applications needing an

accurate time-base during standby, effectively removing the need for a 32 KiHz oscillator with external crystal. High accuracy is obtained through regular calibration of the LjRC

oscillator using the 32 MHz crystal reference clock.

Optional **32 KiHz crystal oscillator**, based on the optional external 32 KiHz crystal. This oscillator can be used when more accurate timing during standby is needed. As a side effect of the more accurate timing, the power consumption can be improved as well for applications that implement synchronized wake up events (i.e. Bluetooth LE) as the more accurate timing results in a smaller guard band and more time spent in sleep mode.

5.13.2 Standby Modes

The QPG6105 supports the following standby modes (see section 6.3 Table 5 for the power consumption):

- **XT Standby** mode: A low power mode that requires no reconfiguration (partial or full state retention). The time base for the Event Scheduler is delivered by the 32 MHz crystal oscillator.
- **RC Standby** mode: A low power mode that requires no reconfiguration (partial or full state retention). The time base for the Event Scheduler is delivered by the internal 32 kHz LjRC oscillator.
- **32KiHz Standby** mode: An optional low power mode that requires no reconfiguration (partial or full state retention). The time base for the Event Scheduler is delivered by the oscillator based on the optional 32 KiHz crystal.

In all standby modes, the QPG6105 can be programmed to also be woken up by an external event.

Note: During RC Standby and 32 KiHz Standby modes various amounts of RAM can be retained (see section 5.10). RC Standby mode and 32 KiHz Standby mode are only supported up to 85°C. Applications up to 125°C should use XT Standby mode.

5.14 Power Management

The QPG6105's integrated power management system includes a Global Low Dropout Regulator (GLDO). This generates an internal 1.8 V power supply rail that is used to supply separate local LDO regulators feeding RF/analog and digital blocks. The local LDOs used to supply RF/analog blocks are specially designed to have high power supply rejection ratio (PSRR) to suppress supply ripples.

5.14.1 Low Voltage Behavior

The QPG6105 contains following features that can be combined to implement the desired low voltage behavior:

VDD Brown-out Interrupt: Interrupt that can be software configured to trigger when VDD drops below the VDD Brown-out threshold while being active. This interrupt can be used to trigger the software to disable the radio and go into standby mode. A higher value gives the application more time for state cleanup. The VDD Brown-out threshold is software configurable: 1.80, 1.85, 1.90 or 1.95 V; default value is 1.80 V.

The VDD Brown-out detector is enabled and configured by software. In case that the Brown-out detector is not enabled, the Cut-Off detector is used to ensure reliable low voltage behavior.

VMT

: Voltage Minimum Threshold (VMT), under which the chip will not wake up from standby mode. VMT is software configurable; range = 1.6 ... 3.1 V; default value is 1.65 V.

VMT crossing detection time is software configurable; default is 125 µs.

Power On Reset voltage level at which the chip will start up is determined by the VMT level; this is guaranteed to be $\leq 1.8 \text{ V}$ at POR.

Cut-Off

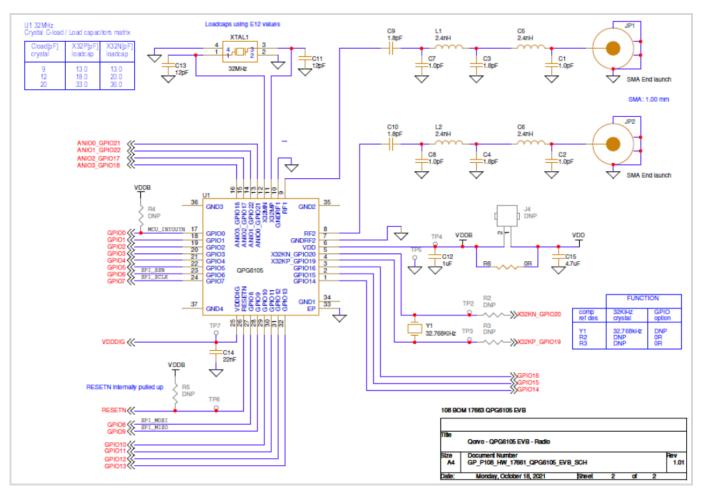
: A VDD threshold under which all functions are disabled, and current consumption is strictly limited. The Cut-Off threshold changes with the configured Brown-out threshold as follows:

Brown-out threshold	Cut-Off threshold
1.80 V (default)	1.65 V
1.85 V	1.69 V
1.90 V	1.72 V
1.95 V	1.76 V

POR Circuit Timing: The Power On Reset circuit resets the chip before the VDD voltage reaches the minimal operating voltage. The chip embeds a Power On Reset circuit with internal and external triggers.

Trigger Type	Trigger condition (Typ)	Response time (Typ)
Internal (on chip VDD monitor)	VDD << 1 V	1 ms
External (RESETn input)	V _{resetn} < ½ VDD	<10 ns

Note: The internal reset trigger circuit samples VDD, the circuit behaves similar to a sample-based circuit at 1 kHz.


The external reset trigger uses an asynchronous (direct) input.

6 Electrical Characteristics

The QPG6105 characteristics are determined in a circuit like shown in Figure 5 below.

Note: The circuit shown is an evaluation circuit for measurement purposes and <u>not</u> a reference design.

Figure 5: Parameter Evaluation Circuit

- Transmit as well as receive behavior is measured in accordance with the IEEE 802.15.4 specification and the Bluetooth Test Specification (RF-PHY.TS.5.0.1).
- All parameters are measured at VDD = 3.0 V and T_A = 25 °C, unless otherwise specified.
- IEEE 802.15.4 channel rejection is measured with the QPG6105 reference design system as interferer.

6.1 Absolute Maximum Ratings

Table 3: Absolute Maximum Ratings

Symbol	Parameter		Value	Unit		
VDD	Supply Input Voltage		-0.3 to +3.6	V		
All Digital pins, including "Analog or Digital" pins (see Table 29)	Digital IO Voltage		-0.3 to VDD+0.3 $(Max = +3.6)$	V		
All Analog pins (see Table 29)	Analog IO Voltage		-0.3 to +1.32	V		
VDDDIG	Decoupling Voltage		Decoupling Voltage		-0.3 to +1.32	V
RF1, RF2	RF IO Voltage		-0.3 to +0.3	V		
P _{MAX}	Input RF level	Input RF level		dBm		
TJ	Junction Temperature)	+125	°C		
T _{stg}	Storage Temperature		-50 to +150	°C		
T _{sol}	Reflow Soldering Tem	nperature	+260 (10 s max.)	°C		
	ESD HBM		Class 1C			
	(ANSI/ESDA/JEDEC JS-001-2017	RF pins:	(1000 V to < 2000 V)			
	Human Body Model)	non-RF pins:	(2000 V to < 4000 V)			
	ESD CDM (ANSI/ESDA/JEDEC JS Charged Device Model)	-002-2018	Class C2a (500 V to < 750 V)			

6.2 Recommended Operating Conditions

Table 4: Recommended Operating Conditions

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
VDD	Power Supply Voltage			1.8	3.0	3.6	V
T _A	Ambient Temperature			-40	+25	+125	°C
F _{ref}	Reference Crystal Oscillation Frequency				32		MHz
			VDD = 1.8 V			0.6	V
V_{IL}	Input Low Voltage for all GPIO lines	Logical value (functional)	VDD = 3.0 V			1.0	
		(runctional)	VDD = 3.6 V			1.3	
		Analogue value (prevents leakag	e current)			0.25	V
			VDD = 1.8 V	1.0			V
V_{IH}	Input High Voltage for all GPIO lines	Logical value (functional)	VDD = 3.0 V	1.6			
	iiies	VDD = 3		2.0			
		Analogue value (prevents leakage current)		VDD – 0	.25		V

Symbol	Parameter	Cond	itions		Min	Тур	Max	Unit
		VDD	Drive Strength ^(*)	l _{OL} (**)				
			4.5 mA	3 mA		0.4	0.6	
Output Low Voltage for all GPIO lines	Output Low Voltage for	4.0.1/	9 mA	7 mA		0.4	0.6	
		1.8 V	13.5 mA	11 mA		0.5	0.6	V
			18 mA	15 mA		0.5	0.6	
			4.5 mA	4.5 mA		0.25	0.40	
		201/	9 mA	9 mA		0.25	0.40	\ /
		3.0 V	13.5 mA	13.5 mA		0.30	0.45	V
			18 mA	18 mA		0.30	0.45	
			4.5 mA	4.5 mA		0.20	0.35	
		3.6 V	9 mA	9 mA		0.20	0.35	V
		3.6 V	13.5 mA	13.5 mA		0.25	0.40	V
		18 mA	18 mA		0.25	0.40		
		VDD	Drive Strength ^(*)	I _{OH} (**)				
		1.8 V	4.5 mA	-4.5 mA	1.1	1.3		V
			9 mA	-9 mA	1.1	1.3		
			13.5 mA	-13.5 mA	1.0	1.2		
			18 mA	-18 mA	1.0	1.2		
	Output High Voltage for	3.0 V	4.5 mA	-4.5 mA	2.45	2.7		V
ОН	all GPIO lines		9 mA	-9 mA	2.45	2.7		
			13.5 mA	-13.5 mA	2.35	2.6		V
			18 mA	-18 mA	2.35	2.6		
			4.5 mA	-4.5 mA	3.1	3.4		
		3.6 V	9 mA	-9 mA	3.1	3.4		V
		3.0 V	13.5 mA	-13.5 mA	3.0	3.3		V
			18 mA	-18 mA	3.0	3.3		
notes:	* Refer to section 5.12.1. ** I _{OL} / I _{OH} : positive valu			negative valu	e: pin is s	sourcing o	current.	
рН	Total sourced current for output lines combined	all GPIO					100	mA
INT	Pulse width for GPIO inte	rrupts			250			ns

6.3 Current Consumption

Table 5: Current Consumption - Common

Symbol	Parameter		Conditions	Min	Тур	Max	Unit
lidle	Idle Modes		Arm asleep		2.0		
			Arm running from RAM				
			@ 32 MHz		3.6		
	(runnina Corel	Mark reference program.)	@ 64 MHz		5.0		mΑ
, ,	al XTAL 32 MHz running)	Arm rupping from Floob		5.5			
			@ 64 MHz		6.9		
standby	Standby Modes	RC Standby mode 8 Kbyte RAM ret			0.9		
		32 Kbyte RAM retained			1.3		
		64 Kbyte RAM retained			2.3		
		96 Kbyte RAM re		3.1			
		128 Kbyte RAM		4.0			
		32 KiHz Standby n 8 Kbyte RAM ret			1.6		
		32 Kbyte RAM retained			2.0		μΑ
		64 Kbyte RAM retained			3.0		
	96 Kbyte RAM 128 Kbyte RAM		etained		3.8		
			retained		4.7		
	(Current consumption depends on crysta specification and load capacitance, see section 6.9 below		XT Standby mode		765		
	Current increase by activated comparator (measurement frequency dependent)		Measurement frequency = 32 kHz		0.23		
eset	Reset Mode	· · · · · · · · · · · · · · · · · · ·			50		μΑ

note: * RC Standby mode and 32 KiHz Standby mode are only supported up to 85°C. Applications up to 125°C should use XT Standby mode.

Table 6: Current Consumption - IEEE 802.15.4

Symbol	Parameter	Conditions	Min	Тур	Max	Unit	
lactive	Active Modes (Operating in IEEE 802.15.4	RX listening*, single antenna		5.6			
cnar	channel 20)	RX listening, single channel, with antenna diversity		7.4			
		RX listening, multi-channel, with antenna diversity		11.5		mA	
		RX receiving packet		10.2			
		TX @ 0 dBm		16.7			
		TX @ 7 dBm, low power mode		26.4			
		TX @ 10 dBm, high power mode		38.8			
Note:	* "RX listening" is define	d as receive mode during preamble hunt				1	

Table 7: Current Consumption - Bluetooth Low Energy

Parameter	Conditions		Min	Тур	Max	Unit	
Active		RX listening* 1 Mbit/s		10.4			
Modes		RX listening 2 Mbit/s		10.7			
		RX receiving packet (1 Mbit/s or 2 Mbit/s)		12.4			
			TX @ 0 dBm		16.7	mA	mA
		TX @ 7 dBm, low power mode		26.4			
	TX @ 10 dBm, high power mode		38.8				
,	Active	Active	Active Modes RX listening* 1 Mbit/s RX listening 2 Mbit/s RX receiving packet (1 Mbit/s or 2 Mbit/s) TX @ 0 dBm TX @ 7 dBm, low power mode TX @ 10 dBm,	Active Modes RX listening* 1 Mbit/s RX listening 2 Mbit/s RX receiving packet (1 Mbit/s or 2 Mbit/s) TX @ 0 dBm TX @ 7 dBm, low power mode TX @ 10 dBm,	Active Modes RX listening* 1 Mbit/s 10.4 RX listening 2 Mbit/s 10.7 RX receiving packet (1 Mbit/s or 2 Mbit/s) TX @ 0 dBm 16.7 TX @ 7 dBm, 26.4 low power mode TX @ 10 dBm, 38.8	Active Modes RX listening* 1 Mbit/s 10.4 RX listening 2 Mbit/s 10.7 RX receiving packet (1 Mbit/s or 2 Mbit/s) TX @ 0 dBm 16.7 TX @ 7 dBm, 26.4 low power mode TX @ 10 dBm, 38.8	

Table 8: Current Consumption - ConcurrentConnect Mode

Symbol	Parameter	Conditions		Min	Тур	Max	Unit	
active	Active Modes		RX listening* concurrent IEEE 802.15.4 and Bluetooth LE		11.6		mA	
Note:	Note: * "RX listening" is defined as receive mode during preamble hunt.							

6.4 Receiver Characteristics

Table 9: Receiver Characteristics - Common

Parameter	Conditions		Min	Тур	Max	Unit
RSSI range	E dD accompany	AGC activated	-101		-33	al Duna
(assuming the HAL is used, see sections 5.1.3 and 8.1)	5 dB accuracy	AGC not activated	-101		-50	dBm
	Resolution			1		dB
LO leakage	2.4 GHz				-47	dBm
	4.8 GHz				-47	ubili

Table 10: Receiver Characteristics - IEEE 802.15.4

Parameter	Conditions	Min	Тур	Max	Unit
RF channels	Programmable in 5 MHz steps as defined by IEEE 802.15.4	2405		2480	MHz
Bit rate			250		kbit/s
Receiver sensitivity	as defined in IEEE 802.15.4 (Measured in IEEE 802.15.4 channel 20)				
	Single channel listening		-101		
	Multi-channel listening (signal at both antenna ports)		-100		
	IEEE 802.15.4 / Bluetooth LE concurrent listening Sensitivity for 2480 MHz may be up to 3 dB worse. For 2415 and 2465 MHz sensitivity may be up to 1 dB worse.		-98		dBm
	Antenna Diversity Gain (refer to section 5.2.2 for the channel model)		8		dB
RX carrier frequency offset range	Sensitivity loss < 2 dB	-200		+215	kHz
Maximum receive level	1% PER as defined in IEEE 802.15.4	+10			dBm
IIP3	RX mode, AGC enabled		+1		dBm
P-1dB RF front-end	RX mode, AGC enabled		-11		dBm
Co-Channel rejection	Packet in Packet collision		-10		dB
	Non-IEEE 802.15.4 Interference (noise)				
	single antenna		-3		dB
	with antenna diversity		-1		ub .
Adjacent channel rejection	as defined in IEEE 802.15.4. IEEE 802.15.4 interferer, +/- 5 MHz		35		dB
Alternate adjacent channel rejection	as defined in IEEE 802.15.4. IEEE 802.15.4 interferer, +/- 10 MHz		47		dB
Far away channel rejection	wanted signal at -82 dBm. IEEE 802.15.4 interferer, +/- 15 MHz		52		dB
Wi-Fi IEEE 802.11ax rejection	wanted signal at -82 dBm. Wi-Fi centered at +12 MHz / -13 MHz or higher offset frequency		37		dB

Parameter	Conditions	Min	Тур	Max	Unit
Bluetooth rejection (fixed carrier, rejection of FSK	wanted signal at -82 dBm, Bluetooth carrier at:				
modulated signal with frequency	+/-4 MHz		36		dB
deviation +/- 160 kHz, BT=0.5)	+/-6 MHz		51		uБ
Blocking / desensitization (e.g. mobile phone signal	(Measured according to ETSI EN 300 440-1 V1.6.1; 2010-08).				
rejection)	-100 MHz from lower band edge		-10		
	-40 MHz from lower band edge		-12		
	-20 MHz from lower band edge		-12		dBm
	+20 MHz from upper band edge		-12		
	+40 MHz from upper band edge		-11		
	+100 MHz from upper band edge		-9		

Table 11: Receiver Characteristics - Bluetooth Low Energy

Parameter		Conditions	Min	Тур	Max	Unit	
RF channels		Channel spacing in 2 MHz steps	2402		2480	MHz	
Frequency er	rror tolerance		-250		250	kHz	
Bit rates	(LE 1M)			1		Mbit/s	
	(LE 2M)			2		Mbit/s	
Data rate erro	or tolerance		-500		+500	ppm	
Receiver sensitivity		* (RF-PHY/RCV-LE/CA/BV-01-C); BER = 10^{-3} (Measured in Bluetooth channel 0 = 2402 MHz)					
		At 2 Mbit/s		-94.5		dBm	
		At 1 Mbit/s		-97		иын	
		Sensitivity at these frequencies may be up to 3 dB worse; 2416 + n*16 (n= 04) [in MHz]					
Receiver saturation		* (RF-PHY/RCV-LE/CA/BV-06-C); BER = 10^{-3}	>+10		dBm		
Co-Channel	rejection	Wanted signal at -67 dBm, modulated interferer in channel, BER = 10 ⁻³		-6.5		dB	
Selectivity		* (RF-PHY/RCV-LE/CA/BV-03-C); BER = 10 ⁻³ , modulated interferer at:					
		-5 MHz or more		43			
		-4 MHz		40			
		-3 MHz		36			
		-2 MHz		28			
		-1 MHz		8		dB	
		+1 MHz		5			
		+2 MHz		27			
		+3 MHz = image frequency -1 MHz		36			
		+4 MHz = image frequency		27			
		+5 MHz or more = image frequency +1 MHz		39			

Parameter Conditions Min Тур Max Unit Out-of-band blocking * (TP/RCV-LE/CA/BV-04-C); 30 ... 2000 MHz 3 2003 ... 2399 MHz -5 dBm 2484 ... 2997 MHz -3 3000 MHz ... 12.75 GHz 3 * (RF-PHY/RCV-LE/CA/BV-04-C); Intermodulation Wanted signal at 2402 MHz, at -64 dBm. -29 dBm Two interferers at 2405 and 2408 MHz respectively, at the given power level.

Note: * As defined in Bluetooth Test Specification RF-PHY.TS.5.0.1, and for 1 Mbit/s bit rate.

6.5 Transmitter Characteristics

Table 12: Transmitter Characteristics - Common

Parameter	Conditions	Min Typ Max	Unit		
Maximum TX output power	High power mode	10	dDr-		
	Low power mode	7	dBm		
Minimum TX output power	Active TX	-27	dBm		
TX output power variation	Over temperature range	+/- 1	dB		
	Part to part variation (+/-3σ)	+/- 1.5	uБ		
	Note: Device does not require any TX power calibration.				
TX Harmonics	Measured at 10 dBm output power in 1 MHz bandwidth				
	FCC regulations, radiated, average power	-41.2			
	ETSI regulations, radiated	-30	dBm		
	China regulations, conducted	-30			
TX out of band emissions	Measured at 10 dBm output power, modulated signal, on all IEEE 802.15.4 and Bluetooth channels. (1 MHz resolution bandwidth, average power)				
	< 2390 MHz	-42	dBm		
	> 2483.5 MHz	-42	ubili		

Table 13: Transmitter Characteristics - IEEE 802.15.4

Parameter	Conditions	Min	Тур	Max	Unit
RF channels	Programmable in 5 MHz steps as defined by IEEE 802.15.4	2405		2480	MHz
Bit rate			250		kbit/s
Chip rate			2.0		Mchip/s
EVM			14	22	%

Table 14: Transmitter Characteristics - Bluetooth Low Energy

Parameter		Conditions		Min	Тур	Max	Unit	
RF channels		Channel spacing in	Channel spacing in 2 MHz steps			2480	MHz	
Bit rates	(LE 1M)	E 1M)			1		Mbit/s	
	(LE 2M)				2		Mbit/s	
In-band emiss	ions	* (RF-PHY/TRM-LE/CA/B\	/-03-C)					
		+/-2 MHz	+/-2 MHz		-46		dBm	
		+/-(3+n) MHz (n=	+/-(3+n) MHz (n=0,1,2)		-54			
Frequency de	viation	* (RF-PHY/TRM-LE/CA/B\	/-06-C)					
		Δf 1 $_{ m avg}$	1 Mbit/s		254		kHz	
		$\Delta f_{\text{avg}} / \Delta f_{\text{avg}}$	I MDIVS		0.94			
		Δf 1 $_{\mathrm{avg}}$	0.141.77		500		La III	
		$\Delta f_{2avg} / \Delta f_{avg}$	2 Mbit/s		0.98		kHz	

Note: * As defined in Bluetooth Test Specification RF-PHY.TS.5.0.1, and for 1 Mbit/s bit rate unless specified otherwise.

6.6 Digital Timing Characteristics

Table 15: SPI Slave Timing Characteristics

Symbol	Parameter	Reference (Figure 6)	Min	Тур	Max	Unit
Fsclk	SCLK frequency	t1	0		16	MHz
	SCLK duty cycle clock			50		%
	MOSI setup time	t2	10			ns
	MOSI hold time	t3	10			ns
	SCLK low to MISO valid time	t4			16	ns
	SSn setup time	t5	31.25			ns
	SSn high to MISO tri-state	t6		3	1.25	ns
	Required time between accesses (from SSn gone high to SSn going low next)	t7	200			ns

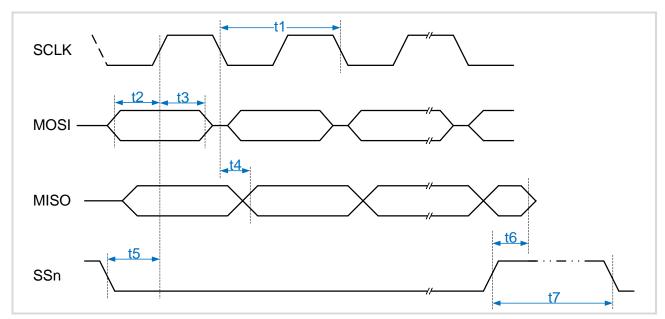


Figure 6: SPI Slave Signaling Timing Diagram

Table 16: I²C Timing Characteristics

		Reference	Standard Mode Fast Mode		
Symbol	Parameter	(Figure 7)	Min Max	Min Max	Unit
FscL	SCL frequency	t1	100	400	kHz
t _{HIGH}	Clock High Time	t2	4	0.6	μs
tLOW	Clock Low Time	t3	4.7	1.3	μs
tsu;sta	START condition setup time	t4	4	0.6	μs
thd;sta	START condition hold time	t5	4.7	0.6	μs
t _{HD;DAT}	Data hold time	t6	0	0	μs
t _{SU;DAT}	Data setup time	t7	0.25	0.1	μs
tsu;sto	STOP condition setup time	t8	4	0.6	μs
t BUF	Bus free time between a STOP and a START condition	t9	4.7	1.3	μs

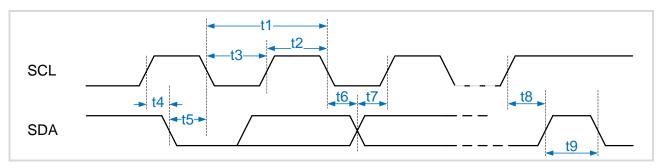


Figure 7: I²C Signaling Timing Diagram

6.7 Reset, Wake up and Standby Timing Characteristics

Table 17: Reset, Wake up and Standby Timings

Application use cases	Remarks		Min	Тур	Max	Unit
Power on detect	See Figure 8 below.			0.5	20	ms
From Power on detect, until Program starts running $^{(*)}$ $^{(**)}$	See Figure 8 below.			520		μs
External Reset, until Program starts running (*) (**)	See Figure 9 below.			520		μs
RESETN pulse width	See Figure 9 below. T minimum is 10 ns.	he RESETN	is asynch	ronous.	A praction	cal
Go to RC Standby mode, from application command (*)	8 Kbyte RAM retained			120		μs
Go to XT Standby mode, from application command					1	μs
Go to 32KiHz Standby mode, from application command	Value is dominated by time of the 32 KiHz cr oscillator (see section Typically, this can go 500 ms.	vstal 6.9.2).		150		ms
Wake up from RC or 32KiHz Standby mode, until Program starts running (*) (**)	8 Kbyte RAM retained RAM not re-initialized.			180		μs
Wake up from XT Standby mode, until Program starts running (*)					1	μs
Note *: The Program is responsible operational data as required		backup:		40		μs
The time required for this is values specified above.	not included in the	restore:		40		μο
Note **: To enable RF reception or t	ransmission, the 32 MH	Iz crystal osc	illator has	to be sta	arted:	
Prepare for RX/TX, when 32 MHz crystal oscillator is not yet running	See Figure 8 and Figure 8 and Figure 19 Value is dominated by time of the 32 MHz cryoscillator (see section	the startup stal		2		ms

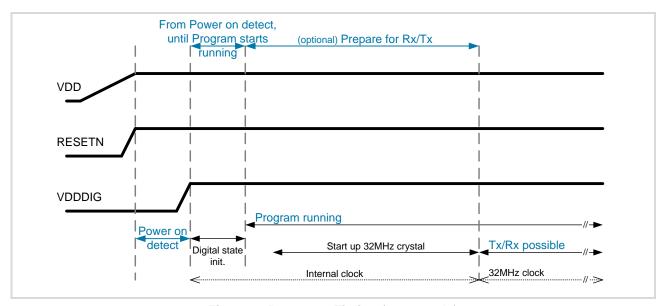


Figure 8: Power On Timing (not to scale)

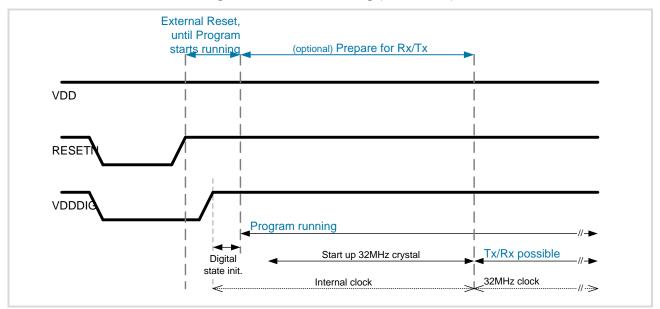


Figure 9: External Reset Timing (not to scale)

6.8 Flash Memory Characteristics

Table 18: Flash Memory Characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit	
	Retention period	As specified in the QPG6105 Qualification Report	10			year	
	Number of ERASE cycles		100k				
	VDD for programming	Zero source resistance	1.8		3.6	V	
	Sector size			1024		byte	
T_{WR}	Write time (512 bytes)	Physical operations, so			2		
T_PE	Sector Erase time	excluding software		3.5		ms	
T _{BE}	Bulk Erase time	overhead and transmission times		8.5			
I_{WR}	Write current			6.6			
IPE	Sector Erase current	Average delta current		2.3		mA	
I _{BE}	Bulk Erase current			2.3			

6.9 Crystal Oscillator Specifications

6.9.1 The 32 MHz Crystal Oscillator

The 32 MHz crystal oscillator is an AGC controlled oscillator that provides a high gain at start-up, to assure fast start-up times, and low gain when running, to minimize current consumption. It generates the system clock for the QPG6105 and can also be used as time base generation.

Some QPG6105 characteristics are crystal dependent. For reliable operation and to meet the specified standby current and startup time the crystal should comply with the Qorvo Procurement Specifications for the crystal. These Specifications are available from Qorvo upon request; see Table 19 below. Note that these Procurement Specifications specify limited operating temperature range; for crystals with extended operating temperature range, please contact Qorvo support. Qorvo can also provide service to evaluate other crystals.

Table 19: 32 MHz Crystal Specifications

Package	Size	Туре	Procurement Specification
Thru-Hole or SMD	Metal can	HC-49S 2 leads	GP_P007_PS_06541
SMD	3.2 x 2.5 mm	4 pads SMD	GP_P007_PS_06542
SMD	2.5 x 2.0 mm	4 pads SMD	GP_P007_PS_06544
SMD	2.0 x 1.6 mm	4 pads SMD	GP_P007_PS_06543

Figure 10 shows the typical configuration of the oscillator. The values of the external load capacitors (Cx, Cy) are crystal type dependent.

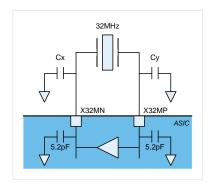


Figure 10: Typical 32 MHz Crystal Configuration

6.9.2 The 32 KiHz Crystal Oscillator (optional)

The 32.768 kHz (in short: 32 KiHz) crystal oscillator is optional and can be used for ultra-low power time base generation for the Event Scheduler with high accuracy. A side effect of this low power consumption is that the start-up time of the 32 KiHz oscillator is very dependent on the crystal and the capacitive load on the X32K oscillator pins. Within the operational temperature range, the 32 KiHz oscillator will always start within one second (At 25°C the start-up time is less than 0.5 s). The application must make sure that the QPG6105 does not enter the 32 KiHz standby mode before the 32 KiHz oscillator is stable.

For reliable operation and to meet the specified characteristics the crystal should comply with the Qorvo Procurement Specifications; see Table 20 below. These Specifications are available from Qorvo upon request. Qorvo can also provide service to evaluate other crystals.

Figure 11 shows the application circuit of this oscillator.

Table 20: 32 KiHz Crystal Specifications

Procurement Specification

GP_P008_PS_13494 (Version 2.00 or higher)

Note: The crystal load capacitors are integrated in the chip.

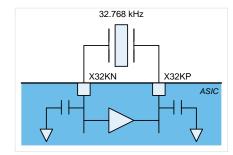


Figure 11: Typical 32 KiHz Crystal Configuration

6.10 Internal Pull-up / Pull-down Characteristics

Table 21: Internal Pull-up / Pull-down Characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
	Internal pull-up resistance	VDD=3.3V, T _A =25°C, Input is grounded.		41		
		VDD=1.8V, T _A =25°C, Input is grounded.		95		kΩ
	Internal pull-down resistance	VDD=3.3V, T _A =25°C, Input is VDD level.		42		
		VDD=1.8V, TA=25°C, Input is VDD level.		110		

6.11 ADC Characteristics

Table 22: ADC Characteristics

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
	Resolution	Sample rate up to 250 000 sample/s			10		bits
		Integration factor up to 15 625 sam	•		12		bits
Vin	Measurement range	At the ANIO pin		0		3.6	V
	Note 1: When the ANIO pin driv use the on-chip buffer(s Note 2: The ADC contains a sc	s), which limits the inp	out range from 0 to	VDD - 1\		recomme	ended to
	Channel switching time	(The ADC uses 1	6 clock cycles		4		μs
	Conversion time	for a conversion)			4		μs
	Reference variation (over temperature range) Single end	Single ended	-4085°C		12		
			-40125°C		24		
		Differential	-4085°C		6		LSb
			-40125°C		12		
INL	Integral Nonlinearity	Single ended, Sca V _{in} > 100 mV	aler gain=1x,		2		I Oh
		Differential measurement, 4% V _{ref} < V _{in} _diff < 96% V _{ref}			1		LSb
		Differential measurement			> -1		LSb

6.12 Battery / Temperature Monitor Characteristics

Table 23: Battery / Temperature Monitor Characteristics

Symbol	Parameter	Conditions	Min Typ	Max	Unit
	Battery level range		1.8	3.6	V
	Resolution of battery level measurement	At 3.6 V	10		mV
	Accuracy of battery level measurement	Typ at 3.6 V. Max over process, voltage and temperature.	25	60	mV
	temperature measurement range		-40	+125	°C
	Resolution of temperature measurement		1.4		°C
	Accuracy of temperature measurement	5 4 3 (C) 1 1 -3 -4 -5 -40 -30 -20 -10 0 10 20 30 Te	-Av+2std -yp -Av-2std -40 50 60 70 80 mperature (°C)	90 100	110 120 13

6.13 Comparator Characteristics

Table 24: Comparator Characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
	Resolution			VDD/64		V
	Threshold level error				1	LSb
	Increase of current consumption in Standby Mode	Measurement frequency = 32 kHz		0.23		μA

6.14 32 kHz LjRC Oscillator Characteristics

Table 25: 32 kHz LjRC Oscillator Characteristics

Symbol	Parameter	Remarks	Min	Тур	Max	Unit
32kRC-tolerance	Frequency stability	1σ value, TA=25°C, calibration performed at least every 2.5 s for an averaging period >1 ms		+/-100		ppm
32kRC-Tc	Temperature coefficient			< +/-100		ppm/K

7 Application Circuit

Qorvo provides reference designs for typical applications, suitable for systems targeting compliance with EN 300 328 and EN 300 440 class 2 (Europe), FCC CFR47 Part 15 (US) and ARIB STD-T66 (Japan). Please contact Qorvo Support.

8 Application Programming Information

Arm Programming Information:

Available from Arm:

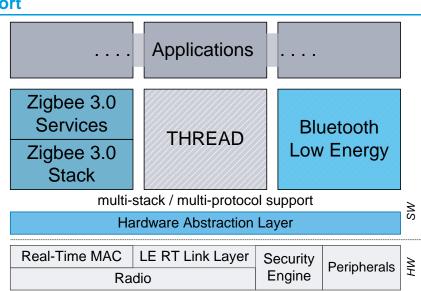
 Generic User Guide, Cortex™-M4 Devices (document DUI 0553A), http://infocenter.arm.com/help/topic/com.arm.doc.dui0553a/DUI0553A_cortex_m4_dgug.pdf.

Available from Qorvo:

- Software Development Kit, including amongst others:
 - o QPG6105 User Manual, describing the various peripherals and interfaces.
 - o API Manuals for the various Qorvo-provided software layers.
 - o Programming Guides for selected functions and features.
 - Sample applications.

Development System:

A development system for the development of QPG6105 software is available from Qorvo upon request.


8.1 Multi-Protocol Support

The QPG6105 can run the full stack and applications for

- Zigbee 3.0
 - o including Green Power,
- Thread
 - the OpenThread implementation
- Bluetooth Low Energy devices.

Integrated multi-stack, multi-protocol support enables different protocol stacks to operate concurrently, and on different channels.

The Hardware Abstraction Layer (HAL) provides an easy-to-use interface abstracting all features of the chip.

9 Flash Programming and Configuration

The Flash program and configuration memory is not programmed when the chips are shipped by Qorvo. To enable the functionality, the Flash must be programmed through a dedicated programming protocol. Please contact Qorvo Support for details of available programming solutions. If programming takes place on the target PCB, the Program Port signals need to be accessible on the PCB.

9.1 SPI Programming Interface

The primary programming interface for (production) programming of the Flash memory is the SPI Slave interface (section 5.12.4). For this the signals shown in Table 26 shall be made available for the Program Port.

Table 26: Mapping Signals to Program Port (SPI)

QPG6105	Program Port	Notes
EP	GND	Ground
VDD	VCC_DUT	The recommended supply voltage is: 3.3 V
RESETN	RESETn	The reset signal
GPIO6	PROG_SSn	Slave select signal
GPIO7	PROG_SCLK	Clock provided by the Programmer
GPIO8	PROG_MOSI	Data from Programmer to device
GPIO9	PROG_MISO	Data from device to Programmer
GPIO5	PROG_ENn	Low (stable) enables programming mode at startup/reset. Should be kept low at least until the first SPI access in programming mode. The time between Reset and the first SPI access must be at least 50 ms. If no command has been received within 4 s, the chip will enter normal application mode.

Following characteristics apply to the SPI programming interface:

- maximum SCLK frequency: 4 MHz
- minimum SSn high time: 2 μs
- minimum last SCLK to SSn high time: 2 μs

9.2 UART Programming Interface

The Flash memory can also be programmed via the UART interface (section 5.12.2). For this the signals shown in Table 27 shall be made available for the Program Port.

Table 27: Mapping Signals to Program Port (UART)

QPG6105	Program Port	Notes
EP	GND	Ground
VDD	VCC_DUT	The recommended supply voltage is: 3.3 V
RESETN	RESETn	The reset signal
GPIO10	UART_TX	Data from device to Programmer
GPIO11	UART_RX	Data from Programmer to device
GPIO5	PROG_ENn	Low (stable) enables programming mode at startup/reset. Should be kept low at least until the first UART access in programming mode. The time between Reset and the first UART access must be at least 50 ms. If no command has been received within 4 s, the chip will enter normal application mode.

Following characteristics apply to the UART programming interface:

• Default baud rate: **57600** Bd (the baud rate can be changed via the programming protocol after initial setup)

1 start bit, 8 data bits, 1 stop bit, no parity

10 Debug Mode

During startup/reset the QPG6105 can be triggered to come up in debug mode. The SWD/JTAG signals shown in Table 28 will then be available.

Table 28: Debug Mode Signals

QPG6105	SWD/JTAG	Notes
GPIO6	SWIO/TMS_b	
GPIO7	SWCLK/TCK_b	
GPIO8	TDI_b	
GPIO9	SWV/TDO_b	
GPIO5	PROG ENn	Low for about 1 s after Reset, then high, enables debug mode.

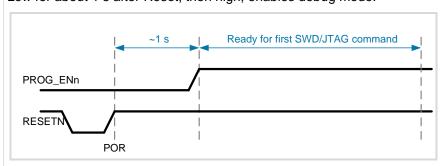


Figure 12: Entering Debug Mode

While PROG_ENn is asserted low, no transaction should be started on SPI or UART (otherwise programming mode will be entered; see chapter 9).

The QPG6105 will be ready for the first SWD/JTAG command for a period of 32 s. If then no command has been received, the chip will enter normal application mode.

11 Device Information

11.1 QFN32 Package

11.1.1 QFN32 Pin Assignments

Figure 13 below shows the pin connections top view, and Table 29 lists the pin assignments. Table 30 provides GPIO assignment options for various functions. For the software configuration options of the GPIO pins, please refer to section 5.12.1. Unless specified otherwise, at power-up/reset all GPIO pins are default set in floating mode.

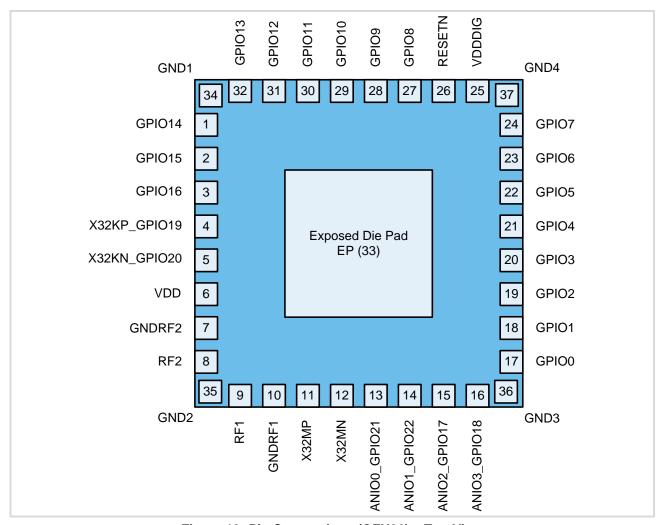


Figure 13: Pin Connections (QFN32) - Top View

Table 29: Pin Assignments (QFN32)

Pin#	Name	Type	Description	Notes	
1	GPIO14	Digital	Configurable GPIO		
2	GPIO15	Digital	Configurable GPIO		
3	GPIO16	Digital	Configurable GPIO		
4	X32KP_GPIO19	Analog or Digital	Optional 32 KiHz crystal output, or Configurable GPIO (input only)	Both pins should either be used for the 32 KiHz reference crystal (analog mode) or defined as GPIO (digital mode – input	
5	X32KN_GPIO20	Analog or Digital	Optional 32 KiHz crystal input, or Configurable GPIO (input only)	only). If a pin is not used, it must be connected to the exposed die pad (GND) or software should disable the input buffer, to prevent leakage current. If defined as GPIO, apply external pull up or pull down to avoid floating input. (See also section 5.12.1.1)	
6	VDD	Power	Power supply input		
7	GNDRF2	RF	RF ground return path RF2	Must be connected to the exposed die pad (GND).	
8	RF2	RF	RF port for antenna 2	In all cases the RF pins should be isolated	
9	RF1	RF	RF port for antenna 1	from ground or VDD. A DC path between RF1 and RF2 is only permitted when used in differential mode.	
10	GNDRF1	RF	RF ground return path RF1	Must be connected to the exposed die pad (GND).	
11	X32MP	Analog	32 MHz reference crystal input	The QPG6105 does not support an	
12	X32MN	Analog	32 MHz reference crystal output	external clock.	
13	ANIO0_GPIO21	Analog or Digital	Preferred ADC input, or Configurable GPIO (input only).		
14	ANIO1_GPIO22	Analog or Digital	Preferred ADC input, or Configurable GPIO (input only)	ANIO pins that are not used, are recommended to be connected to the	
15	ANIO2_GPIO17	Analog or Digital	Optional ADC input, or Configurable GPIO	exposed die pad (GND).	
16	ANIO3_GPIO18	Analog or Digital	Optional ADC input, or Configurable GPIO		
17	GPIO0	Digital	Configurable GPIO		
18	GPIO1	Digital	Configurable GPIO		
19	GPIO2	Digital	Configurable GPIO		
20	GPIO3	Digital	Configurable GPIO		
21	GPIO4	Digital	Configurable GPIO		
22	GPIO5	Digital	Configurable GPIO	This pin shall be available for optional Flash programming, see chapter 9. At start-up/reset, the QPG6105 bootloader enables a temporary weak internal pull-up to prevent the QPG6105 entering programming mode in normal operation.	

Pin#	Name	Type	Description	Notes	
23	GPIO6	Digital	Configurable GPIO	These pins shall be available for optional	
24	GPIO7	Digital	Configurable GPIO	Flash programming via SPI, see chapter 9.	
25	VDDDIG	Power	Power supply output for decoupling	Decoupling to ground. This pin requires a 22 nF decoupling capacitor to ground.	
26	RESETN	Digital	Active-low reset circuit	Internally pulled up, so no external pull up is required. This pin shall be available for optional Flash programming, see chapter 9.	
27	GPIO8	Digital	Configurable GPIO	These pins shall be available for optional	
28	GPIO9	Digital	Configurable GPIO	Flash programming via SPI, see chapter 9.	
29	GPIO10	Digital	Configurable GPIO	These pins shall be available for optional	
30	GPIO11	Digital	Configurable GPIO	Flash programming via UART, see chapter 9.	
31	GPIO12	Digital	Configurable GPIO		
32	GPIO13	Digital	Configurable GPIO		
Die pad (33)	EP	Ground	Exposed die pad; analog chip ground	RF ground (GND)	
(34)	GND1	Ground	\		
(35)	GND2	Ground	Additional ground connections,	Available for easier ground routing, e.g.	
(36)	GND3	Ground	internally connected to the die pad via the lead frame.	on single layer designs.	
(37)	GND4	Ground	/		

For the software configuration options of the GPIO pins, please refer to section 5.12.1. Unless specified otherwise, at power-up/reset all GPIO pins are default set in floating mode.

Table 30: GPIO Assignment Options (QFN32)

	Pin	Wake	Drive	SPI	SPI	I ² C	I ² C	I ² S	UART	UART		DIAMA	Time-	PDM	. =5	SWD/	Clock
#	Name	Up	group	Master	Slave	Master	Slave	Master / Slave ¹	0	1	IR	PWM	stamp	(Voice)	LED	JTAG ²	Output
17	GPIO0	WKUP		MISO ³	SSn	SDA ⁴	SDA ⁴	SDI	RX	TX	OUT	PWM0 PWM6	Tstmp0	DATA CLK	LED0	SWIO/TMS	
18	GPIO1	WKUP	03	SSn MISO ³	MISO SCLK	SCL⁴	SCL⁴	WS WS_IN	TX	RX		PWM1 PWM7	Tstmp1	CLK DATA	LED1	SWV/TDO	
19	GPIO2	WKUP	03	SCLK	MOSI SSn	SDA ⁴	SDA ⁴	SCK SCK_IN	RX	TX	OUT	PWM2 PWM5	Tstmp2	DATA CLK	LED2	TDI	
20	GPIO3	WKUP		MOSI	SCLK MISO	SCL 4	SCL ⁴	SDO	TX	RX		PWM3 PWM4	Tstmp3	CLK DATA	LED3	SWCLK/TCK	
21	GPIO4	WKUP		MISO ³	SSn MOSI			SDI	RX			PWM0	Tstmp0		LED0	SWIO/TMS	
22	GPIO5	WKUP	47	SSn	MISO			WS WS_IN	TX			PWM1	Tstmp1		LED1	SWV/TDO	
23	GPIO6	WKUP	47	MOSI MISO ³	SSn			SDO	RX	TX		PWM4 PWM6			LED0	SWIO/TMS	
24	GPIO7	WKUP			SCLK	SCL 4	SCL ⁴		TX	RX		PWM5 PWM7			LED1	SWCLK/TCK	
27	GPIO8	WKUP			MOSI	SDA 4	SDA ⁴		RX	TX		PWM4 PWM6			LED2	TDI	
28	GPIO9	WKUP	811		MISO				TX	RX		PWM5 PWM7			LED3	SWV/TDO	
29	GPIO10	WKUP	011	SCLK	SSn			WS WS_IN	RX TX	TX	OUT	PWM0	Tstmp0	DATA	LED0	SWIO/TMS	CLK_OUT
30	GPIO11	WKUP		MOSI	SCLK			SCK SCK_IN	TX RX	RX		PWM1	Tstmp1	CLK	LED1	SWCLK/TCK	

¹ I²S Master uses SDO, SDI, SCK, WS and optionally REF_CLK. I2S Slave uses SDO, SDI, SCK_IN, WS_IN and optionally REF_CLK. WS_IN and SCK_IN may require external pull down to prevent floating input signals, depending on the behavior of the master device (e.g. during sleep state).

² Options printed in bold are the ones used by the Debug Mode (see chapter 10).

³ SPI MISO signal may require external pull down to prevent floating input signal, depending on the behavior of the slave device (e.g. during sleep state, or when not selected).

⁴ I²C bus signals (SCL, SDA) require external pull up.

	Pin	in Wake	Wake	Pin Wake	Wake	Drive Strength	SPI	SPI	I ² C	I ² C	I ² S	UART	UART	in.	D14/14	Time-	PDM	. =5	SWD/	Clock
#	Name	Up	p group	Master	Slave	Master	Slave	Master / Slave ¹	0	1	IR	PWM	stamp	(Voice)	LED	JTAG ²	Output			
31	GPIO12	WKUP		MISO ³ SCLK	MOSI SSn			SDO	RX TX	TX RX	OUT	PWM2 PWM7	Tstmp2	DATA	LED2	TDI				
32	GPIO13	WKUP	1215	SSn MOSI	MISO SCLK	SDA ⁴	SDA ⁴	WS SDI WS_IN	TX RX	RX TX	OUT	PWM3 PWM6	Tstmp3	CLK	LED3	SWV/TDO				
1	GPIO14	WKUP		SCLK	MOSI	SCL ⁴	SCL ⁴	SCK SCK_IN	RX	TX		PWM0 PWM4	Tstmp0	DATA CLK	LED0	TDI				
2	GPIO15	WKUP		MOSI MISO ³	MISO	SDA ⁴	SDA ⁴	SDO	TX	RX		PWM1 PWM5	Tstmp1	CLK DATA	LED1	SWV/TDO				
3	GPIO16	WKUP		MISO ³ SSn	SSn	SCL ⁴	SCL ⁴	WS SDI WS_IN	RX	TX	OUT	PWM2 PWM6	Tstmp2	DATA CLK	LED2	SWIO/TMS				
15	GPIO17	WKUP	1619	SCLK	SSn	SDA ⁴	SDA ⁴	SCK SCK_IN	RX TX	RX		PWM4	Tstmp2	CLK DATA	LED2	SWIO/TMS				
16	GPIO18	WKUP		MOSI	MISO	SCL 4	SCL ⁴	SDO	TX RX	TX	OUT	PWM5	Tstmp3	DATA CLK	LED3	SWV/TDO				
4	GPIO19	WKUP								RX			Tstmp2	DATA						
5	GPIO20	WKUP											Tstmp3							
13	GPIO21	WKUP	input only		MOSI			SCK_IN	RX				Tstmp0							
14	GPIO22	WKUP		MISO ³	SCLK			SDI WS_IN	RX				Tstmp1	DATA						

11.1.2 QFN32 Package Drawings

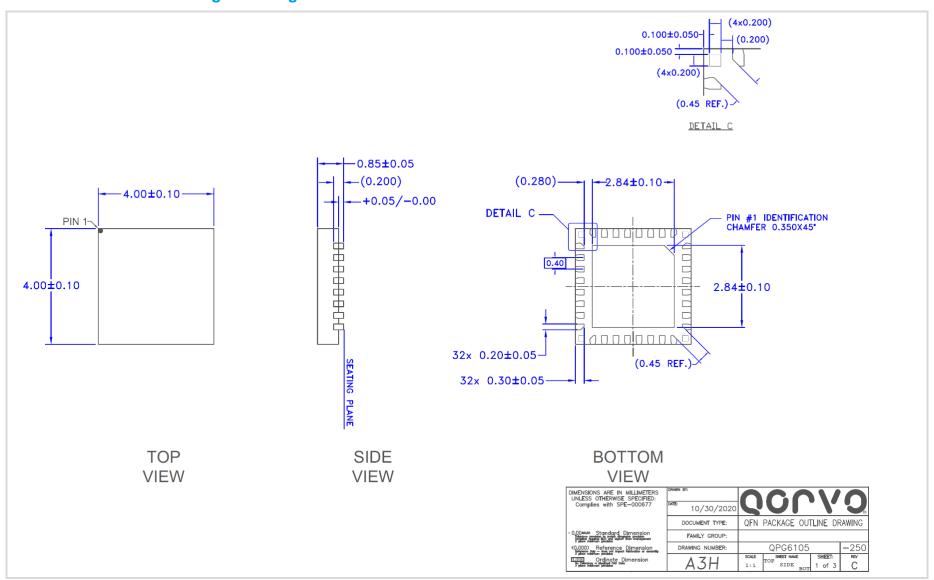


Figure 14: QFN32 Package Drawings and Dimensions (Refer to Product Change Notification # 22-0072)

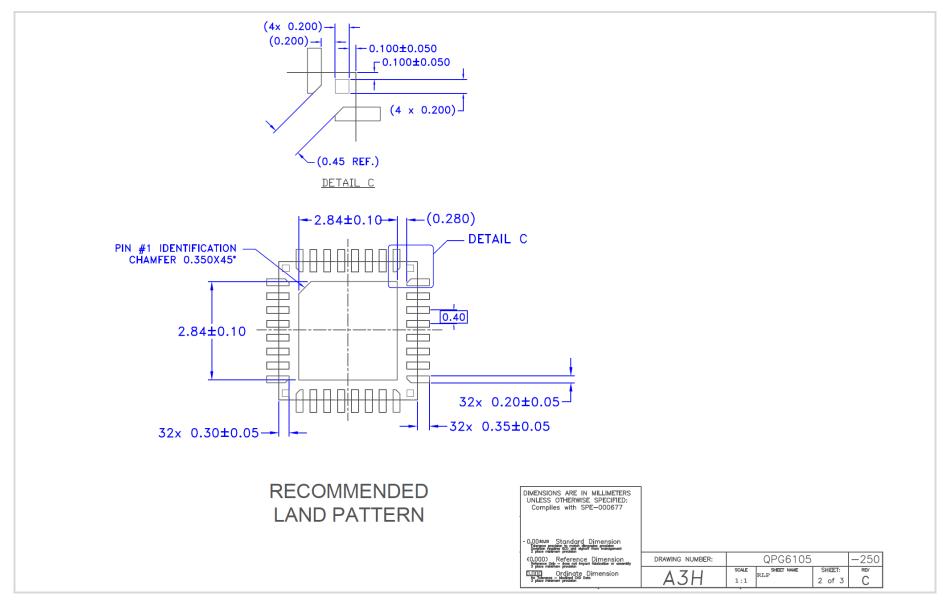


Figure 15: QFN32 Recommended Land Pattern

11.1.3 QFN32 Package Information

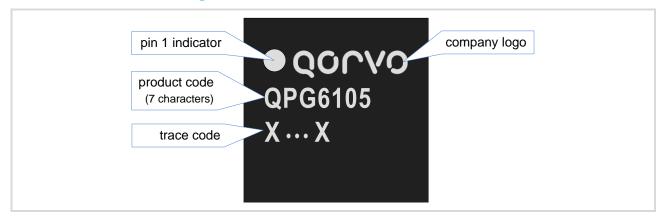


Figure 16: Information on the QFN32 Package

Note: Product code = first 7 characters of the part number (see chapter 4).

11.1.4 QFN32 Thermal Characteristics

Table 31: QFN32 Thermal Characteristics

Symbol	Parameter	Conditions	QFN32 value	Unit
Theta JA (R _{θJA})	Thermal resistance from junction to ambient	JEDEC JESD 51-2; JEDEC 2S2P (4L) board as per JESD 51-7	30	K/W
Psi-JT (Ψ_{JT})	Junction-to-Top thermal characterization parameter	JEDEC JESD 51-12	15	K/W

11.1.5 QFN32 Tape and Reel Information

11.1.5.1 Carrier and Cover Tape Dimensions

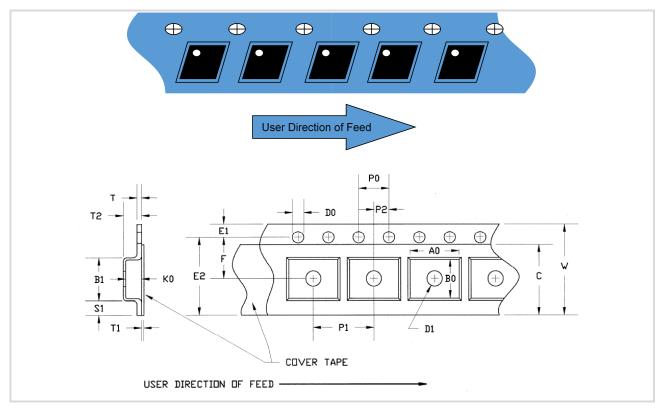


Figure 17: Carrier and Cover Tape Dimensions

Table 32: Carrier and Cover Tape Dimensions

Feature	Measure	Symbol	Size (in)	Size (mm)
	Length	A0	0.170	4.3
Covity	Width	В0	0.170	4.3
Cavity	Depth	K0	0.049	1.25
	Pitch	P1	0.315	8.0
Centerline	Cavity to Perforation - Length Direction	P2	0.079	2.0
Distance	Cavity to Perforation - Width Direction	F	0.217	5.50
Cover Tape	Width	С	0.362	9.20
Carrier Tape	Width	W	0.472	12.0

11.1.5.2 Reel Dimensions

Packaging reels are used to prevent damage to devices during shipping and storage, loaded carrier tape is typically wound onto a plastic take-up reel. The reel size is 13" diameter (7" for samples). The reels are made from high-impact injection-molded polystyrene (HIPS), which offers mechanical and ESD protection to packaged devices.

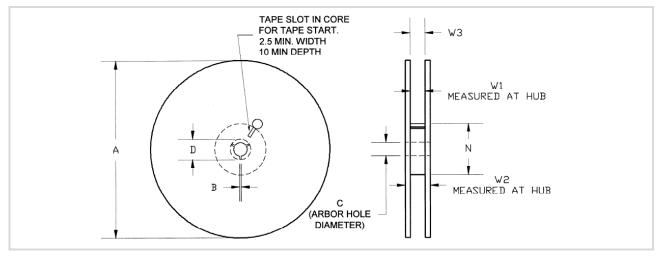


Figure 18: Reel Dimensions

Table 33: 13" Reel Dimensions

Feature	Measure	Symbol	Size (in)	Size (mm)
Flange	Diameter	Α	12.992	330
	Thickness	W2	0.874	22.2
	Space Between Flange	W1	0.661	16.8
	Outer Diameter	N	4.016	102.0
Hub	Arbor Hole Diameter	С	0.512	13.0
Hub	Key Slit Width	В	0.079	2.0
	Key Slit Diameter	D	0.795	20.2

Table 34: 7" Reel Dimensions

Feature	Measure	Symbol	Size (in)	Size (mm)	
	Diameter	А	6.969	177.0	
Flange	Thickness	W2	0.717	18.2	
	Space Between Flange	W1	0.504	12.8	
	Outer Diameter	N	2.283	58.0	
Llub	Arbor Hole Diameter	С	0.512	13.0	
Hub	Key Slit Width	В	0.079	2.0	
	Key Slit Diameter	D	0.787	20.0	

11.1.5.3 Tape Info and Label Placement

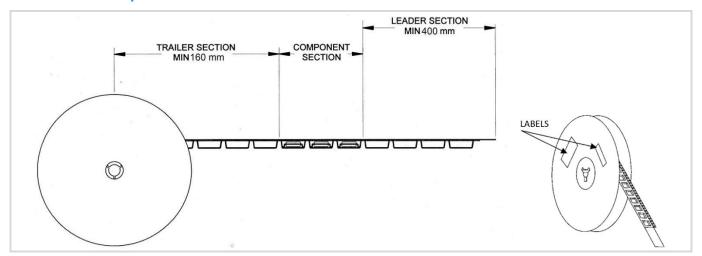


Figure 19: Tape and Labels

Notes:

- 1. Empty part cavities at the trailing and leading ends are sealed with cover tape. See EIA 481.
- 2. Labels are placed on the flange opposite the sprockets in the carrier tape.

11.2 Moisture/Reflow Sensitivity

Table 35: Moisture/Reflow Sensitivity

Symbol	Parameter	Conditions	Value	Unit					
	Soldering Process		Pb-free						
Tc	Peak reflow temperature	10 s max.	260	°С					
MSL	Moisture Sensitivity Level 3								
	The Moisture/Reflow Sensitivity is classified according to: IPC/JEDEC J-STD-020D.1 (March 2008) Joint Industry Standard; Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices.								

11.3 RoHS Compliance

Table 36: RoHS Compliance

Symbol	Attribute	Compliant
RoHS	Restrictions on the Use of Certain Hazardous Substances in Electrical and Electronic Equipment; Directives 2011/65/EU and 2015/863/EU.	✓
Pb	Lead Free	✓
	Halogen Free (Chlorine, Bromine)	✓
	Antimony Free	✓
	TBBP-A (C ₁₅ H ₁₂ Br ₄ O ₂) Free	✓
	PFOS Free	✓
	SVHC Free	✓

12 Errata

12.1 Spurious External Event

A spurious 'external event' interrupt may be triggered in the following case:

- A timer event is triggered that wakes up the device from RC Standby Mode or 32KiHz Standby Mode, AND
- a GPIO with wake-up capability (WKUP) has been configured to trigger on 'falling edge' (using internal or external pull-up)

This issue will never lead to spurious wake-ups, i.e. the issue is triggered as part of the wake-up resulting from the timer event. The spurious external event can be safely ignored in the external event handler in this case; example: external wake-up line is not low on wake-up. In practice, external event handlers incorporate the robustness against this spurious event by default. Processing overhead of the spurious event will be negligible. In addition, there are handles in the chip that can help working around this issue.

Abbreviations

ACL	Asynchronous Connection Logical	ISM	Industrial, Scientific, and Medical (license-
ADC	transport Analog-to-Digital Converter	LDO	free frequency band) Low Drop-Out voltage regulator
AEC	Automotive Electronics Council	LE	(Bluetooth) Low Energy
AES	Advanced Encryption Standard	LED	Light Emitting Diode
AGC	Automatic Gain Control	LL	(Bluetooth) Link Layer
ANIO	Analog Input/Output	LQI	Link Quality Indication
API	Application Program(ming) Interface	LSb	Least-Significant bit
ARIB	(Japan) Association of Radio Industries	MAC	Medium Access Control layer
ANID	and Businesses	MCU	MicroController Unit
CCA	Clear Channel Assessment	MEMS	Micro-Electro-Mechanical Systems
CCM	Counter with CBC-MAC (ciphering), where	MOQ	•
CCIVI	CBC-MAC = cipher block chaining	MSb	Minimum Order Quantity Most-Significant bit
	message authentication code	NVM	Non-Volatile Memory
CCM*	extension of CCM	OTA	Over the Air
		PCB	Printed Circuit Board
CDM	(ESD) Charged Device Model	PDM	Pulse-Density Modulation
CSIVIA/CA	Carrier Sense Multiple Access with Collision Avoidance	PER	Packet Error Rate
DNII		PHY	Physical layer
DNL ESD	Differential Nonlinearity	POR	Power On Reset
ETSI	Electrostatic Discharge European Telecommunication	PSRR	Power Supply Rejection Ratio
EISI	Standardization Institute	PWM	Pulse-Width Modulation
EVM		QFN	Quad Flat No leads (package)
FCC	Error Vector Magnitude (US) Federal Communications Commission	RAM	Random-Access Memory
GATT	Generic Attribute Protocol	RC	resistor–capacitor (circuit)
GLDO	Global Low Drop-Out voltage regulator	RF	Radio Frequency
GLDO	Ground	rf4ce	(Zigbee) Radio Frequency for Consumer
GPIO	General Purpose Input / Output	11466	Electronics
HAL	Hardware Abstraction Layer	RSSI	Received Signal Strength Indication
HBM	(ESD) Human Body Model	RoHS	Restriction of Hazardous Substances
HCI	Host Controller Interface	110110	(Directive)
IC	Integrated Circuit	ROM	Read-Only Memory
IEEE	Institute of Electrical and Electronics	RX	Receive
ILLL	Engineers	SPI	Serial Peripheral Interface
INL	Integral Nonlinearity	TWI	Two-Wire Interface
I ² C	Inter-Integrated Circuit	TX	Transmit
I ² S	Inter-IC Sound	UART	Universal Asynchronous Receiver and
IIP3	Third Order Input Intercept Point	OAICI	Transmitter
IO	Input/Output	VDD	Voltage Drain Drain (i.e. Positive voltage
IR	InfraRed	V D D	supply)
ш	IIIIaNGU	VMT	Voltage Minimum Threshold

Important Notices

The information contained in this Data Sheet and any associated documents ("Data Sheet Information") is believed to be reliable; however, Qorvo makes no warranties regarding the Data Sheet Information and assumes no responsibility or liability whatsoever for the use of said information. All Data Sheet Information is subject to change without notice. Customers should obtain and verify the latest relevant Data Sheet Information before placing orders for Qorvo® products. Data Sheet Information or the use thereof does not grant, explicitly, implicitly or otherwise any rights or licenses to any third party with respect to patents or any other intellectual property whether with regard to such Data Sheet Information itself or anything described by such information.

DATA SHEET INFORMATION DOES NOT CONSTITUTE A WARRANTY WITH RESPECT TO THE PRODUCTS DESCRIBED HEREIN, AND QORVO HEREBY DISCLAIMS ANY AND ALL WARRANTIES WITH RESPECT TO SUCH PRODUCTS WHETHER EXPRESS OR IMPLIED BY LAW, COURSE OF DEALING, COURSE OF PERFORMANCE, USAGE OF TRADE OR OTHERWISE, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Without limiting the generality of the foregoing, Qorvo® products are not warranted or authorized for use as critical components in medical, life-saving, or life-sustaining applications, or other applications where a failure would reasonably be expected to cause severe personal injury or death. Applications described in the Data Sheet Information are for illustrative purposes only. Customers are responsible for validating that a particular product described in the Data Sheet Information is suitable for use in a particular application.

© 2021-2023 Qorvo, Inc. All rights reserved. This document is subject to copyright laws in various jurisdictions worldwide and may not be reproduced or distributed, in whole or in part, without the express written consent of Qorvo, Inc. | QORVO® is a registered trademark of Qorvo, Inc. | ConcurrentConnectTM technology is a trademark of Qorvo, Inc.

The Bluetooth® word mark and logos are registered trademarks owned by Bluetooth SIG, Inc. and any use of such marks by Qorvo is under license. Arm and Cortex are registered trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere. This device contains Packetcraft Open Source protocol software; Copyright (c) 2019 Packetcraft, Inc. | Licensed under the Apache License, Version 2.0. All other trademarks, trade names, product or service names are those of their respective owners.

Product Status

	Marking	Product Status	Definition					
	ADVANCE INFO	Formative / In Design	Datasheet contains design specifications for product development. Specifications may change in any manner without notice.					
	PRELIMINARY	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Qorvo reserves the right to make changes at any time without notice to improve the design.					
>	(none)	Production Datasheet contains final specifications. Qorvo reserves the make changes at any time without notice to improve the design						
	OBSOLETE	Not in Production	Datasheet contains specifications on a product that is discontinued. The datasheet is for reference information only.					

Document History

Version	Date	Section	Changes
1.00	9 Jun 2022		FINAL Release.
1.01	13 Sep 2022	1, 3, 5.2.2, 5.2.7, 5.4, 5.6	Updated text on ConcurrentConnect.
		5.14.1	Added POR Detector.
		6.12	Updated accuracy of temperature measurement.
		11.1.1	Corrected GPIO18 PDM pin assignment.
		11.1.2	Updated package outline drawings according to PCN#22-0072.
1.02	4 Oct 2022		Document classification changed to Unrestricted. Format changed to Letter.
		1	Added bullet for ConcurrentConnect Multi-Channel.
1.03	10 Oct 2023	Table 10	Desense information added for IEEE 802.15.4 communication.
		Table 22	Supported ADC input range updated.
1.04	15 Nov 2023	Table 10	IEEE 802.15.4 sensitivity updated. Channel numbers replaced by frequencies.
		Table 11	BLE channels with reduced sensitivity expressed as frequencies.