

© 2023 Copyright, Qorvo International, Inc. - 1 - PAC25140 CANopen Manual_v1.0.0

No portion of this document may be reproduced or reused in any form without Qorvo’s prior written consent.

PAC25140 CANopen Manual

Power Application Controller®
2023-09-29

© 2023 Copyright, Qorvo International, Inc. - 2 - PAC25140 CANopen Manual_v1.0.0

No portion of this document may be reproduced or reused in any form without Qorvo’s prior written consent.

Contents

Contents
1. Introduction .. 3

1.1 Short description of CAN and CANopen... 3
1.2 Features of CANopenNode .. 5

2. Design... 6
2.1 Files ... 6
2.2 Program flow chart (mainline and timer procedure) .. 7
2.3 Reset Node and Reset Communication procedures .. 8
2.4 CAN messages, receiving/transmitting .. 9
2.4.1 Variables for CAN messages .. 9
2.4.2 Reception of CAN messages ... 11

2.4.3 Transmission of CAN messages ... 12
2.5 Mainline procedure .. 13
2.6 COB – Communication Objects .. 14
2.6.1 NMT and network management ... 14
2.6.2 SYNC ... 15
2.6.3 EMERGENCY and error handling ... 15

2.6.4 TIME STAMP .. 16
2.6.5 PDO – Process Data Objects .. 16
2.6.6 SDO – Service Data Objects ... 17
2.6.7 Heartbeat .. 18
2.7 Object Dictionary ... 18
2.7.1 Memory types of variables ... 18

2.7.2 Connection between variables and Object Dictionary .. 19
2.7.3 Verify function .. 19

3. Compiler and Hardware connection .. 20
3.1 Compiler .. 20
3.2 Hardware connection ... 20

4. Examples and Object Dictionary .. 21

4.1 NMT Module Control protocol ... 21
4.1.1 Start Remote Node ... 21
4.1.2 Reset Node ... 23
4.2. Initiate SDO Upload/Download ... 25
4.2.1. Initiate SDO Download ... 25
4.2.2. Initiate SDO Upload .. 27

Contact Information ... 29
Important Notice .. 29

© 2023 Copyright, Qorvo International, Inc. - 3 - PAC25140 CANopen Manual_v1.0.0

No portion of this document may be reproduced or reused in any form without Qorvo’s prior written consent.

1. Introduction

CANopenNode is an Open-Source program written for 8-bit microcontrollers. It can be used in
various devices connected on CAN bus (sensors, input/output units, command interfaces, various

controllers etc.). Program is written according to CANopen standard, so devices can communicate
with other devices based on CANopen.

1.1 Short description of CAN and CANopen

CAN (Controller Area Network) is serial bus system originally developed to be used in cars. It is

also widely used in an industrial automation. Since it is cost effective (it is implemented inside
many 8-bit microcontrollers) it can be used in wide range of applications.

Some features of CAN:

• cost effective,

• implemented in hardware,

• reliable (sophisticated error detection, erroneous messages are repeated, high immunity to

electromagnetic interference),

• flexible,

• message length: max 8 bytes,

• messages have unique CAN identifier,

• arbitration without losing time, for example high priority message is send immediately after

current message in transmission,

• data rate (cable length): 10kbps (5 km) to 1Mbps (25m),

• for connection of cables no hub or switch is needed. Devices can also be opto-isolated from

network.

CAN reliability (statistic): If a network based on 250kbps operates for 2000 hours per year at an

average bus load of 25% an undetected error occurs only once per 1000 years. [CANopenBook]

CAN is an implementation of lower layers of a communication. But when we need communication

between devices, there are some issues: which identifiers to use, what are the contents of messages,

how to handle errors, how to monitor other nodes, etc. To avoid reinventing the wheel there is
CANopen.

CANopen is one of higher layer protocols based on CAN. It is Open, it means someone can use it

and customize it as he wants. To comply the standard, minimum implementation is required.

Anyway, CANopen offers many useful features, which can be used for good and reliable
communication.

© 2023 Copyright, Qorvo International, Inc. - 4 - PAC25140 CANopen Manual_v1.0.0

No portion of this document may be reproduced or reused in any form without Qorvo’s prior written consent.

Some features of CANopen:

• With standard CAN identifier (11bit), up to 127 nodes can be on one network.

• It is not a typical master/slave protocol, so master is not necessary. However, some features can

be used on one node only, for example SDO client. This node is usually used for configuration,
and we can call it a master.

• Object Dictionary (OD): Inside OD are sorted variables, which are used by node and are

accessible over CAN bus. OD has 16bit wide index and for each index 8bit wide subindex (for
example variable Device Type has index 0x1000 and subindex 0x00). Variables can be accessed

via CAN with SDO (Service Data Objects). Variables can be read/write, read/only, etc. They
can be retentive. Length of variables is up to 256 bytes (longer variables are transferred with

segmented transfer). With standard CANopen Configuration tool, which runs on PC, OD is
visible as tree, so device can be easy configured. With Object Dictionary a lot of variables can be

accessed, but it is not the fastest way.

• PDO (Process Data Objects) are exchanged between nodes for fast communication. PDO is up
to 8byte wide data object, transmitted from one node to that node, which are set to receive it.

PDO can be send in different ways: periodically in time intervals, on change of state,
synchronous with other nodes, etc. Node can transmit up to 512 PDOs and can receive up to 512

PDOs from other nodes (predefined connection set offers 4 TPDOs and 4 RPDOs).

• NMT (Network Management): Include, Boot-up message, Heartbeat protocol, and NMT
message. Each node can be in one of four states: initialization, pre- operational, operational or

stopped. For example, PDOs are working only in Operational state.

• Error control – Heartbeat protocol: It is for error control purposes and signals the presence of

a node and its state. The Heartbeat message is a periodic message of the node to one or several
other nodes. Other nodes can monitor if specific node is still working properly. (Besides,

Heartbeat protocol there exists an old and out-dated error control services, which is called Node

and Life Guarding protocol.)

• Emergency message is sent in case of error or warning in node.

For understanding CANopenNode further knowledge is required.

Microcontroller, C programming and CANopen protocol must be understood.

© 2023 Copyright, Qorvo International, Inc. - 5 - PAC25140 CANopen Manual_v1.0.0

No portion of this document may be reproduced or reused in any form without Qorvo’s prior written consent.

1.2 Features of CANopenNode

• Macros for configuration: Features can be configured with macros in CO_OD.h file. If

feature is reduced or disabled, program and memory size is reduced.

• CAN bit rates: 10, 20, 50, 100, 125, 250, 500, 800, 1000 kbps; oscillator frequencies: 4,

8, 16, 20, 24, 32, 40, ... MHz; 8-bit Microcontroller can be stable also on 100% bus load on

1000 kbps bit rate.

• CANopen conformance: Comply to [CiADS301], [CiADR303-3]. Works with standard

frame format (11bit identifier). Possible is RTR bit.

• Service Data Objects (SDO): SDO server and SDO client is implemented, expedited and

segmented transfer. Variables can be long up to 256 bytes.

• Object dictionary (OD): It has two sides:

1. CANopen side: Variables are accessed through index, sub-index and length via SDOs (read

only, read/write etc.). Before written to memory, they can be verified for correct value.

2. Program side: Variables have ordinary names (no index, sub-index). They can be in RAM

Memory space, EEPROM or Flash Program space. EEPROM and Flash variables are

retentive (keep value after power off) and can be changed via SDOs. Implementation is

simple, fast and flexible.

• Process Data Objects (PDO): Implemented are TPDOs and RPDOs. Synchronous
Transmission is automatic, other methods are possible. Parameters are COB-ID,

Transmission Type, Inhibit time and Event timer. Mapping is static and must be 'hand made'.

Length of PDO is calculated from Mapping.

• SYNC object: Producer or consumer with 1ms accuracy.

• Network management (NMT): Implemented, can operate with or without NMT master.

• Heartbeat / Node guarding: Heartbeat producer and consumer. (Monitoring of presence

and NMT state of multiple nodes implemented). Node guarding is not implemented.

• User CAN messages: Freely usable RX or TX CAN messages.

• Error control: Emergency objects are used. Mechanism to catch different errors is

implemented. For each error occurred, different flag bit is set and Emergency message is
sent. According to flag bits, error register is calculated and device can be put in pre-

operational. All Errors can be easily tracked through Object Dictionary Entry (index
0x2100). This mechanism can also be used for user defined errors.

• Status LED diodes: Green and Red diodes according to [CiADR303-3].

• Example for Generic Input/Output device: Digital I/O, Analog I/O, Change of state

transmission with event and inhibit timer. According to device profile CiADS401.

© 2023 Copyright, Qorvo International, Inc. - 6 - PAC25140 CANopen Manual_v1.0.0

No portion of this document may be reproduced or reused in any form without Qorvo’s prior written consent.

2. Design

CANopenNode is currently applied for PAC25140 BMS.

Implemented is CANopen and frame for user program. Goal is to be simple, powerful and open for

extensions.

CANopenNode is Open Source. License used is LGPL, that means license acts only on library, not on

complete user program.

2.1 Files
► …\pac25xxx\CANopenNode (folder) – CANopenNode source code. It includes the

documents and source files for CANopen with example:

► doc (subfolders) – documentation:

CANopenNode Manual.pdf – This manual in pdf format.

► stack (subfolders) – includes code files for majority protocols of CANopenNode:

► Emergency

► HBconsumer

► Heartbeat

► PDO

► SDO

► SYNC

► Other files – license and source files:

► CANopen.h – main CANopen header file. Included are general definitions and

other headers.

► CANopen.c – main CANopen processor and configuration.

► CO_driver.h – Processor / compiler specific macros.

► CO_driver.c – Processor / compiler specific functions.

► CO_OD.h – header for Object Dictionary and main setup for CANopenNode.

► CO_OD.c – variables, verify function and Object Dictionary for CANopenNode.

► LICENSE – GNU GENERAL PUBLIC LICENSE file.

© 2023 Copyright, Qorvo International, Inc. - 7 - PAC25140 CANopen Manual_v1.0.0

No portion of this document may be reproduced or reused in any form without Qorvo’s prior written consent.

main()

Reset_Node

call

CO_process()

call

bms_process_running()

2.2 Program flow chart (mainline and timer procedure)

CANopenNode program execution is divided into three(four) tasks:

1. After startup, basic task is mainline. It is executed inside endless loop. In CO_process
function not-time-critical program code is processed. All code is non-blocking.

2. Second task is Timer procedure which is triggered by interrupt and is executed every 1
millisecond. Here is processed time-critical code. Code must be fast. If execution time is longer

than 1ms, overflow occurs, error bit is set and Emergency message is sent.

3. Third and fourth tasks are CAN transmit/receive interrupts. CAN receive interrupt must have
priority over timer procedure.

Fields with blue background are functions, where user code can be written. Besides, that user can

define other interrupts (and in multitasking systems other tasks, of course).

Picture 2.1 – Flow chart for mainline and timer procedure

CO_TimerProcess ()
Execution every millisecond

increment

CO_timer1ms

handle variables:
CO_SYNC_process
CO_SYNC_counter

if active, then

produce SYNC

call

User_Process1msIsr()

PDO transmission

© 2023 Copyright, Qorvo International, Inc. - 8 - PAC25140 CANopen Manual_v1.0.0

No portion of this document may be reproduced or reused in any form without Qorvo’s prior written consent.

CO_ResetComm()
Called inside CO_Init() and
after NMT command:
'Reset Communication'

Read Node-ID and
CAN Bit Rate from
external function

Setup

CANopenNode specific
variables

Call

User_ResetComm()

Setup

CO_RXCAN[] and
CO_TXCAN[] arrays

Initialize

CAN hardware

2.3 Reset Node and Reset Communication procedures

In CANopen two different resets are defined: 'Reset Node' and 'Reset Communication'. Both can be

triggered with NMT command from NMT master node. First reset is complete processor reset and is

executed also after processor bootup, second is partial reset and is used for communication reset. In
CO_ResetComm() all CANopenNode specific variables are setup. So, for example if PDO

communication parameters has been changed, 'Reset Communication' must be performed for

changes to take effect.

Fields with blue background are functions, where user code can be written.

Picture 2.2 – Reset Node and Reset Communication procedures

Reset_Node
Called immediately after
processor bootup

Call

User_Init()

Call

CO_Init()

Call

CO_ResetComm()

Initialize and start

Timer procedure and
Interrupts

© 2023 Copyright, Qorvo International, Inc. - 9 - PAC25140 CANopen Manual_v1.0.0

No portion of this document may be reproduced or reused in any form without Qorvo’s prior written consent.

2.4 CAN messages, receiving/transmitting

Receiving and transmitting of CAN messages is made with interrupt functions. These functions are

hardware specific. They have integrated some CANopen specific code.

2.4.1 Variables for CAN messages

Main variables for CAN messages are CO_CANmodule_rxArray0[] & CO_CANmodule_txArray0[]

arrays (rx = receive, tx = transmit). Number of members in each array is equal to number of
different CANopen communication objects (COB=communication object). Everything in
CANopenNode 'turns around' these two arrays. For description, which COBs are used in each
array, see CAN_driver.h file.

 static CO_CANrx_t *CO_CANmodule_rxArray0;

 static CO_CANtx_t *CO_CANmodule_txArray0;

Type of one element in each array is described below:
typedef struct{

union{

uint32_t RXBUF0;

struct{

unsigned DLC :4;

unsigned :2;

unsigned RTR :1;

 unsigned FF :1;

unsigned ident :16;

unsigned data0 :8;

 };

 };

 uint8_t data[8];

}CO_CANrxMsg_t;

typedef struct{

 union{

 uint32_t TXBUF0;

 struct{

 unsigned DLC :4;

 unsigned :2;

 unsigned RTR :1;

 unsigned FF :1;

 unsigned ident :16;

 unsigned data0 :8;

 };

 };

 […]

 uint8_t data[8];

 volatile bool_t bufferFull;

 volatile bool_t syncFlag;

}CO_CANtx_t;

Besides, there are 2 communication flags are declared in CO_driver.h:
typedef struct{

 […]

volatile bool_t bufferInhibitFlag;

 volatile bool_t firstCANtxMessage;

}CO_CANmodule_t;

© 2023 Copyright, Qorvo International, Inc. - 10 - PAC25140 CANopen Manual_v1.0.0

No portion of this document may be reproduced or reused in any form without Qorvo’s prior written consent.

ident is CAN message standard identifier aligned with hardware registers. It includes 11 bit COB-

ID and Remote Transfer Request bit (RTR). For alignment use macros CO_CANinterrupt() from

CO_driver.c. Message is received if CAN-ID and RTR are matched.

DLC is length of data in message (CAN uses 0 to 8 bytes). For receiving there is a special rule: if

value is greater than 8, length of message is not checked and thus message with any length is
accepted.

firstCANtxMessage is a flag: for reception this bit is set when new message has received, for

transmission this bit 'informs' tx interrupt procedure, that this message is ready to be sent.

firstCANtxMessage flag has different meaning. For reception, data from new message received

from bus are not copied if (bufferInhibitFlag==1 AND firstCANtxMessage==1). For example,

if old message was not read yet, new message is lost. For transmission, flag is used for synchronous
TPDO messages. Message is destroyed and is not send over CAN, if bufferInhibitFlag==1

AND time is outside SYNC window (OD, index 1007h).

data is 8 bytes of CAN data.

At communication reset first whole array is cleared and then all values except Data are initialized
(inside CO_ResetComm() function). This way minimal data copying is achieved, and no other

buffers are needed.

© 2023 Copyright, Qorvo International, Inc. - 11 - PAC25140 CANopen Manual_v1.0.0

No portion of this document may be reproduced or reused in any form without Qorvo’s prior written consent.

CO_CANinterrupt () - interrupt
Triggered when new message
from CAN bus has received.

Search
CO_CANmodule_rxArray0[]

array for equal ident

Was

ident matched
NO

YES

Verify DLC and
Inhibit

ERR

OK

Set firstCANtxMessage

flag and copy Data

2.4.2 Reception of CAN messages

CANopen uses many different CAN identifiers, so hardware filtering of messages cannot always be
used. Instead, filtering is implemented in software. Principle is the following: Identifiers for all
COBs, used with current configuration, are written in CO_CANmodule_rxArray0[] array at startup.

When new message arrives from CAN bus, CO_CANinterrupt() interrupt is triggered and array is

searched from first to last element. If both COB-IDs, from message and array, are matched,
message goes into further processing. If not, interrupt exits.

This interrupt must be high priority and must have low latency, because many messages must be

filtered out. In CANopenNode it is implemented with fast assembly code, so there is no problem

even with high CAN bit rates and high bus load.

Received messages are then handled inside different functions. Details will be described in next

chapters.

Picture 2.3 – Reception of CAN messages

© 2023 Copyright, Qorvo International, Inc. - 12 - PAC25140 CANopen Manual_v1.0.0

No portion of this document may be reproduced or reused in any form without Qorvo’s prior written consent.

CO_CANsend (index) Called
from mainline or timer
function.

Was
previous message

sent

NO

YES

Is CAN
TX buffer

idle

NO

YES

Set firstCANtxMessage
flag and increase variable

CANtxCount

Copy Message to
CAN registers

CO_CANinterrupt () -
interrupt Triggered when
previous message was
successfully sent.

clear CANRX
interrupt flag

Is CANtxCount > 0
NO

YES

Search CO_TXCAN[] which

element has
firstCANtxMessage flag set

Copy message to
CAN registers

Erase firstCANtxMessage
flag and decrease variable

CANtxCount

2.4.3 Transmission of CAN messages

Function, which wants to send CAN message, first prepares adequate CO_CANmodule_txArray0[]

array element: writes Data and, if necessary, it can also modify other parameters. Then it calls
CO_CANsend() function. If CAN TX buffer is free, message will be sent immediately, otherwise it

will be marked, and interrupt will send it. Messages with lower index (CO_CANmodule_txArray0

[index]) will be send first.

Picture 2.4 – Transmission of CAN messages

© 2023 Copyright, Qorvo International, Inc. - 13 - PAC25140 CANopen Manual_v1.0.0

No portion of this document may be reproduced or reused in any form without Qorvo’s prior written consent.

CO_ProcessMain()
Executed cyclically from mainline

Update
timer variables

SDO server
state machine

Call CO_ProcessDriver()
for microcontroller

specific code

Handle
Heartbeat consumer

messages

Verify if new
NMT message received
and execute command

Produce
Heartbeat message

Handle errors,
Emer e and gency messag
calc ister ulate Error_Reg

Handle
CANopen status LEDs

2.5 Mainline procedure

As mentioned in chapter 2.2, there are two 'tasks' handling CANopen messages. Timer procedure is

shorter and is described in that chapter, mainline procedure is described here.

CO_process() is executed inside endless loop. There is processed program code, which is not time-

critical. All code is non-blocking. Sometimes a lot of code has to be processed, so this can lead to
longer delays and longer execution cycle. For example, SDO communication is very time
consuming.

In same loop also user function bms_process_running() is processing. There can also be time

consuming and not-time-critical code. Anyway, blocking functions must not be used.

Picture 2.5 – Flow chart of CANopenNode mainline procedure

© 2023 Copyright, Qorvo International, Inc. - 14 - PAC25140 CANopen Manual_v1.0.0

No portion of this document may be reproduced or reused in any form without Qorvo’s prior written consent.

2.6 COB – Communication Objects

Pre-defined Connection Set in CANopen connects Communication Objects with their identifiers. It

applies to the standard CAN frame with 11-bit Identifier. Especially for PDOs it is not the rule to

use Pre-defined values.

Object COB-ID

NMT SERVICE 000h

SYNC 080h

EMERGENCY 080h + NODE ID

TIME STAMP 100h

TPDO1 180h + NODE ID

RPDO1 200h + NODE ID

TPDO2 280h + NODE ID

RPDO2 300h + NODE ID

TPDO3 380h + NODE ID

RPDO3 400h + NODE ID

TPDO4 480h + NODE ID

RPDO4 500h + NODE ID

TSDO 580h + NODE ID

RSDO 600h + NODE ID

HEARTBEAT 700h + NODE ID

Table 2.1 – Pre-defined Connection Set

2.6.1 NMT and network management

Network management is detailed in CANopen standard. In general, each node has 4 possible states:

Initialization, Pre-Operational, Operational and Stopped. In Operational state, all communication is
allowed. In Pre-Operational state, all communication is allowed, except PDOs. In Stopped state,

only NMT messages can be received and processed. Handling those states is quite tricky, especially
if reliable communication is required.

By default, node enters Operational state after bootup. This is set with variable 'NMT startup' in

Object Dictionary at index 0x1F80. If bit 2 is set, node will start Pre-Operational after bootup.

There is another issue. If there is an error in the node, node sometimes should not enter into

Operational. This happens, when Error Register (OD, index 0x1001) is set. More about that is in

'EMERGENCY' chapter.

In CANopenNode received NMT messages are handled in CO_Process() function. According to

command, actions are triggered. NMT master can be easily implemented with user defined CANTX
message. NMT master can send specific NMT command to single node or to all nodes (broadcast).

© 2023 Copyright, Qorvo International, Inc. - 15 - PAC25140 CANopen Manual_v1.0.0

No portion of this document may be reproduced or reused in any form without Qorvo’s prior written consent.

2.6.2 SYNC

SYNC message is useful for synchronization. One node on the network sends it periodically in
constant time intervals. It can be used for different purposes, one of them is using Synchronous

PDOs.

SYNC message is integrated into CANopenNode. It is handled inside Timer procedure. Basic time

unit is 1 millisecond. CANopenNode can be a producer or consumer. There are two useful variables

related to SYNC: CO_SYNC_process and CO_SYNCcounter (type unsigned int). CO_SYNC_process is

incremented each millisecond and reset to zero, each time SYNC is received/transmitted.

CO_SYNCcounter is incremented each time, SYNC is received/transmitted.

2.6.3 EMERGENCY and error handling

Error handling is very useful thing in practical implementation of network. In testing phase there

can be some bugs in software and even some errors in electronic or mechanic parts of network. With

error handling many of those errors can be tracked.

In CANopenNode error handling is made simple. In general when error occurs in a node, node

should not crash, it should operate further.

Principle is the following: if somewhere in program occurs error (certain condition is met),
CO_errorReport() function is called, which just sets some variables. When in turn, error handling

is processed inside CO_Process() function. All Error handling specific definitions are collected in

file CO_Emergency.h.

Following function accepts two parameters:

void CO_errorReport(CO_EM_t *em, const uint8_t errorBit, const uint16_t

errorCode, const uint32_t infoCode);

errorBit is unique for each different error situation, Code is customer specific additional

information about the error. As said before, this function just sets some variables, besides others it
sets appropriate bit in errorStatusBits[] array. If that bit was already set before, nothing

happens. This way specific error is reported only the first time, later repeating is ignored. Opposite
function to CO_errorReport() is CO_errorReset(), where specific bit is cleared if error is solved

somehow.

If new error occurred, procedure inside CO_Process() function verifies new situation. First, Error

Register (OD, index 0x1001) is calculated from errorStatusBits[] array. Then EMERGENCY
message is sent. Emergency is also written to history (OD, index 1003).

EMERGENCY message is 8 bytes long. First three bytes are standard: First two bytes are
Emergency Error Code, Third byte is Error Register. 4th byte is ErrorBit and 5th-6th bytes are Code

from CO_errorReport() function. 7th and 8th byte can be user specific.

Each bit in 1-byte long Error Register is calculated from state of errorStatusBits[] array. See

CO_errorRegisterBitmask_t macros in CO_Emergency.h file. When Condition for specific bit is

met, that bit is set and vice versa. In some cases, those conditions can be more restrictive, in other
cases not.

If Error Register is not equal to zero, node is prevented to be in Operational state, and PDOs cannot

be transmitted or received.

If macro OD_errorStatusBits in CO_OD.h file is set to 1, Communication error bit in Error register

will not prevent node to be in Operational state. In this case node will always stay operational, even

© 2023 Copyright, Qorvo International, Inc. - 16 - PAC25140 CANopen Manual_v1.0.0

No portion of this document may be reproduced or reused in any form without Qorvo’s prior written consent.

if disconnected from network.

2.6.4 TIME STAMP

Not implemented in CANopenNode.

2.6.5 PDO – Process Data Objects

Process Data Objects are optimized for frequent transmission of Data over the network. In

comparison with Service Data Objects they are faster, shorter, no protocol overhead and need no
answer. Whole 8-bit wide CAN data field is used for Process Data.

CANopen uses two parameters for setup PDOs: PDO Communication Parameters and PDO

Mapping Parameters. For proper using of PDOs understanding of them is required. They are

described in other Literature.

Mapping parameters describes which data from Object Dictionary are used for specific PDO. In

CANopenNode all mapping is static, this means that mapping cannot be changed, after program is
build. In CANopenNode mapping parameters are used for calculating length of PDOs. When

RPDOs are received, length must match to that specified in mapping or RPDO will not be

processed and emergency will be sent first time. If mapping parameters are disabled by disabling
macro RPDOMapPar, length of TPDOs will be fixed to 8 bytes and any length of RPDO will be

accepted. Mapping parameters can also be disabled in CO_OD.h file. In this case, TPDO length will

be fixed to 8 bytes and any RPDO length will be accepted.

Communication Parameters describes CAN ID for PDO communication object (COB-ID),

Transmission Type, Inhibit time and Event timer.

COB-ID on transmitting node must match COB-IDs on all receiving nodes. On CANopen is only

one rule for COB-IDs: There must not exist two equal COB-IDs on one network for transmitted

messages. Anyway, CANopen has pre-defined connection set, where for 4 TPDOs and 4 RPDOs
COB-IDs are defined. In CANopenNode standard or custom values can be used. If bit 31==1, PDO

is not used.

Transmission Type describes, when PDO will be transmitted. There are more possibilities: Time

intervals, Change-of-state, combination of them, after Remote transmission request (rtr – CAN
feature), or synchronous after SYNC message.

PDO transmission in CANopenNode

Many options are possible.

Synchronous transmission is implemented in CANopenNode. Messages are transmitted

automatically after every n-th SYNC message (n = value of Transmission Type variable 1 ... 240). It
is predictable.

Event timer sends message in time intervals and is automatic in CANopenNode.

One possibility is combination of Change-of-state and (longer) Time intervals. This is good in

cases, where changes are not very often. Advantage is fast response and low traffic. Problems are for
example with values from analog sensors, where least significant bit changes often. This leads to

many unnecessary messages. Another problem is that bus load cannot be always predicted. This
method is used in Example with generic I/O.

Data, which are sent with TPDO, must be written manually before PDO is sent. They must be
written in array CO->TPDO[i], where index is PDO number (0 is first PDO).

To send PDO manually, just call the following function:
int16_t CO_TPDOsend(CO_TPDO_t *TPDO);

where *TPDO is PDO number (0 is first PDO). If return == 0, transmission was successful.

PDOs are (and may be) transmitted only when node is in Operational state.

© 2023 Copyright, Qorvo International, Inc. - 17 - PAC25140 CANopen Manual_v1.0.0

No portion of this document may be reproduced or reused in any form without Qorvo’s prior written consent.

PDO reception in CANopenNode

When PDO arrives from CAN bus, it is memorized. Anyway, PDOs may only be used when node is

in Operational state.

RPDO data can be read from CO->RPDO[i] array, where index is PDO number (0 is first PDO).

CO_RPDO_New(i) array element is set to 1 every time PDO is received. User may manually erase it.

User must pay attention on one issue: PDO is received with high priority interrupt, so if user reads
data and interrupt occurs during read, data can be unpredictable. So, during read, CANrx interrupt
should be disabled (see CO_driver.h).

Another issue is rule in CANopen standard, where synchronous PDOs must be processed after next

SYNC message. But after next SYNC message also next RPDO can arrive and overwrite old PDO.
Solution is: inside Timer1ms procedure save all new RPDOs to different location except if
CO_SYNC_process == 0. If so, process previously copied RPDOs.

There is no control, if node is in operational state, received PDO is saved always.

To make sure PDO reception is working correctly, following conditions must be met before read of
RPDO Data: Both, this node and transmitting node, must be in operational state. Checking of
CO_RPDO_New(i) is thus not necessary. For scanning other nodes use Heartbeat consumer.

2.6.6 SDO – Service Data Objects

With SDO whole Object Dictionary of any node on the CANopen network can be accessed. SDO
client (master) have access to SDO servers on other nodes.

SDO server is integrated in CANopenNode. Maximum variable length can be set from 4 ... 256

bytes. If max. length is 4 bytes, then only expedited transfer is used. Otherwise, segmented transfer

is used and more flash memory is consumed. More than 1 SDO channel can be used.

Also, SDO client non-blocking functions are available, so CANopenNode can be used as master
too. For example how to use them, see functions CO_SDOclientDownload () and

CO_SDOclientUpload().

SDO communication have access to many variables, but it is not very fast. It is quite time

consuming especially in PIC microcontrollers. But it is very powerful for setup the node.

Design in CANopenNode: SDO server is a state machine implemented inside mainline function.
When new SDO object arrives from client, it is processed and some static variables are set.

According to command and state it: searches Object Dictionary (OD) for entry with correct index

and subindex, make verifications, send aborts if necessary, collect data segments, reads or writes to
variables from OD, etc. For CANopenNode user no detailed knowledge about SDO objects is

needed.

© 2023 Copyright, Qorvo International, Inc. - 18 - PAC25140 CANopen Manual_v1.0.0

No portion of this document may be reproduced or reused in any form without Qorvo’s prior written consent.

2.6.7 Heartbeat

Heartbeat protocol is used for monitoring proper operation of remote nodes. In CANopenNode are

implemented Heartbeat producer and consumer. Old-dated Node Guarding is not implemented.

With Heartbeat no master is needed and each node can monitor nodes, which are important for it.

To setup Producer, corresponding entry in OD must be edited. Node will produce periodic Heartbeat

messages.

Heartbeat consumer monitors presence and state of nodes defined in corresponding entry in OD.
Monitoring starts after reception of the first Heartbeat from specified node. If Heartbeat does not

arrive in specified time, emergency message is generated. Heartbeat consumer time value should be
set to 1,5 * Heartbeat producer time value on remote node. State of remote node can be read from
CO_HBcons->NMTstate(i) array.

2.7 Object Dictionary

One of the most powerful features of CANopen is Object Dictionary. It is like a table, where are
collected all network-accessible data. Each entry has 16bit index and 8bit subindex. Data type of

each entry can be different - from 8 bit unsigned to string.

In CANopenNode Object Dictionary is an array of entries CO_OD[]. Each entry has an information

about index, sub-index, attribute (read only, read/write etc.), length and pointer to data variable.
There are “Two sides” of Object Dictionary:

1. Program side: Variables have ordinary names (no index, subindex) and types.

2. CANopen side: Ordinary variables are collected in CO_OD[] array and so SDO server have access

to them through index, sub-index and length (read only, read/write etc.).

2.7.1 Memory types of variables

In CANopenNode three types of variables are used in Object Dictionary:

• Variables allocated in program memory flash space (ROM variables).

• Variables allocated in RAM space.

• Variables allocated in RAM space and saved-to/loaded-from EEPROM.

1. Features of ROM variables:

• Keep value after power off.

• Initialization values are written when chip is being programmed.

• Readable as usual variables.

• Writable in run time with SDO objects.

• Writing to variable by user program is not possible directly.

• Possible problem: if device resets during write data can be corrupted.

© 2023 Copyright, Qorvo International, Inc. - 19 - PAC25140 CANopen Manual_v1.0.0

No portion of this document may be reproduced or reused in any form without Qorvo’s prior written consent.

2. Features of RAM variables:

• Classic read/write.

• After power off value is lost.

3. Features of EEPROM variables:

• Variables are read from (written to) RAM (allocated inside CO_OD_EEPROM structure).

• At chip initialization values are read from EEPROM.

• At run time background routine compares RAM and EEPROM and saves byte by byte.

• Classic writing to variable by user program.

• Possible problem: if microcontroller resets during write: multi byte variable can be
corrupted.

Reading and writing to different types of variables is processor specific, so these two functions are

different for different microcontroller. They are placed in CO_driver.c file.

2.7.2 Connection between variables and Object Dictionary

• To each variable is assigned one entry of CO_OD[] array;

• Entry holds information about index, subindex, length and pointer to variable.

• When SDO server wants to find entry (with specific index and sub-index) inside object
dictionary, it calls const CO_OD_entryRecord_t and function returns pointer to that entry.

2.7.3 Verify function

Function VerifyODwrite() is called from SDO server, when a write to Object Dictionary entry is

in progress. Function is called when data, that came from network are known. Function verifies if
data value is correct and then returns SDO Abort Code. If returns 0, data are correct and are written
to Object Dictionary. Function does not verify length - it is verified by SDO server.

© 2023 Copyright, Qorvo International, Inc. - 20 - PAC25140 CANopen Manual_v1.0.0

No portion of this document may be reproduced or reused in any form without Qorvo’s prior written consent.

3. Compiler and Hardware connection

Main hardware specific files are:

• main.c – initialization and definition for interrupt, timer1ms and main functions.

• CO_driver.h – Processor / compiler specific macros.

• CO_driver.c – Processor / compiler specific functions.

These files contain:

• Base for main and interrupt functions.

• Different software and interrupt enable/disable macros.

• Function for reading Node-ID and Bitrate from hardware.

• Function for initialization of CAN controller.

• Function for writing message to CAN controller.

• Interrupt for receiving messages from CAN controller and identifying them. It must be fast.

• Handling errors from CAN controller.

• Read/write data from/to Object Dictionary. Data can be in RAM or in ROM memory.

• Handling EEPROM variables.

3.1 Compiler

The PAC25140 contains an Arm Cortex-M4F. CANopenNode is applied for it with integrated CAN

module.

Compiler used is GNU Arm on Eclipse IDE v4.27.

Memory types used are RAM, ROM and EEPROM. Read/write via SDO is fully supported.

ROM variables uses program flash memory and utilizes self-programming feature.

EEPROM variables are on startup read from internal EEPROM to RAM.

If RAM is changed EEPROM is automatically updated.

3.2 Hardware connection
PLL setting: 50MHz

CAN baud rate setting: 125kbps.

PAC25140 device connect to CANalyst-II module via CAN transceiver, connection as below:

PAC25140 CAN transceiver CANalyst-II

VCC33 (3.3V) 3V3 -

GND GND -

GPIOE.P2 RXD -

GPIOE.P3 TXD -

- CANH CAN1H

- CANL CAN1L

© 2023 Copyright, Qorvo International, Inc. - 21 - PAC25140 CANopen Manual_v1.0.0

No portion of this document may be reproduced or reused in any form without Qorvo’s prior written consent.

4. Examples and Object Dictionary

4.1 NMT Module Control protocol

4.1.1 Start Remote Node
1. After connecting PAC25140 to CANalyst-II, open CANPro Analyzer.

2. Select [Start] on the taskbar.

© 2023 Copyright, Qorvo International, Inc. - 22 - PAC25140 CANopen Manual_v1.0.0

No portion of this document may be reproduced or reused in any form without Qorvo’s prior written consent.

3. Select the Baud-rate: 125kbps, then press [OK].

4. Select [Send Data] → 4.1. In the send data window Select Message [NMT Module Control] →

4.2. Set DLC:2 → 4.3. Select NMT command [Start Remote Node], Note ID: 0x23→ 4.4. Send

Immediately.

© 2023 Copyright, Qorvo International, Inc. - 23 - PAC25140 CANopen Manual_v1.0.0

No portion of this document may be reproduced or reused in any form without Qorvo’s prior written consent.

5. Node Status is change from [Pre-Operational] to [Operational].

6. Protocol:

- Frame ID: 00000000

→ CAN ID: 000

- Data Frame: 01 23

→ CMD: Start Remote, Node ID: 0x23

4.1.2 Reset Node
Similar with Start Remote Control for step 1-3.

4. Select [Send Data] → 4.1. In the send data window Select Message [NMT Module Control] →

4.2. Set DLC:2 → 4.3. Select NMT command [Start Remote Node] - Note ID: 0x23 → 4.4. Send

Immediately.

© 2023 Copyright, Qorvo International, Inc. - 24 - PAC25140 CANopen Manual_v1.0.0

No portion of this document may be reproduced or reused in any form without Qorvo’s prior written consent.

5. Node Status is change from [Operational] to [Boot-up], then change to [Pre-Operational].

6. Protocol:

- Frame ID: 00000000

→ CAN ID: 000

- Data Frame: 81 23

→ CMD: Reset Node, Node ID: 0x23

Similar for Stop Remote Node, Pre-operational state and Reset Communication.

© 2023 Copyright, Qorvo International, Inc. - 25 - PAC25140 CANopen Manual_v1.0.0

No portion of this document may be reproduced or reused in any form without Qorvo’s prior written consent.

4.2. Initiate SDO Upload/Download
4.2.1. Initiate SDO Download

 Similar with Start Remote Control for step 1-3.

4. Select [Send Data] → 4.1. In the send window Select Message [Initiate SDO Download Request]

→ 4.2. Set DLC: 8 → 4.3. Set Note ID: 0x23 - Index: 0x1017 (2bytes) - Sub-index: 0 - Transfer type:

Expedited - Size indication: Indicated - Bytes Note Data: 0x02 - SDO Data: 0xA5 5A → 4.4. Send

Immediately.

© 2023 Copyright, Qorvo International, Inc. - 26 - PAC25140 CANopen Manual_v1.0.0

No portion of this document may be reproduced or reused in any form without Qorvo’s prior written consent.

5. CANalyst send a request download to PAC25140 to write the data to Index, then PAC2510 send a

response message to confirm.

6. Protocol

 6.1. Request:

- Frame ID: 00000623

→ CAN ID: 600 + 23 (Node ID)

- Data Frame: 2B 17 10 00 A5 5A 00 00

 → CMD: 2B (2byte data length)

 Index: 1017

 Sub-index: 0

 2-byte data: A5 5A

➔ Data 0xA5 5A is written to Index: 0x1017

 6.2. Confirm:

- Frame ID: 000005A3

→ CAN ID: 580 + 23 (Node ID)

- Data Frame: 2B 17 10 00 A5 5A 00 00

 → CMD: 60 (OK)

 Index: 1017

 Sub-index: 0

 Byte4-7: 0

© 2023 Copyright, Qorvo International, Inc. - 27 - PAC25140 CANopen Manual_v1.0.0

No portion of this document may be reproduced or reused in any form without Qorvo’s prior written consent.

4.2.2. Initiate SDO Upload

Similar with Start Remote Control for step 1-3.

4. Select [Send Data] → 4.1. In the send window Select Message [Initiate SDO Upload Request] →

4.2. Set DLC: 8 → 4.3. Set Note ID: 0x23 - Index: 0x1017 (2bytes) - Sub-index: 0 → 4.4. Send

Immediately.

© 2023 Copyright, Qorvo International, Inc. - 28 - PAC25140 CANopen Manual_v1.0.0

No portion of this document may be reproduced or reused in any form without Qorvo’s prior written consent.

5. CANalyst send a request upload to PAC25140 to read data on the Index, then PAC2510 send a

response data to Confirm.

6. Protocol

 6.1. Request:

- Frame ID: 00000623

→ CAN ID: 600 + 23 (Node ID)

- Data Frame: 40 17 10 00 00 00 00 00

 → CMD: 40 (fixed)

 Index: 1017

 Sub-index: 0

 Byte4-7: 0

 6.2. Confirm:

- Frame ID: 000005A3

→ CAN ID: 580 + 23 (Node ID)

- Data Frame: 4B 17 10 00 A5 5A 00 00

 → CMD: 4B (2byte data length)

 Index: 1017

 Sub-index: 0

 2-byte data: A5 5A

➔ Data 0xA5 5A is written to Index: 0x1017, and can read by Upload Request.

© 2023 Copyright, Qorvo International, Inc. - 29 - PAC25140 CANopen Manual_v1.0.0

No portion of this document may be reproduced or reused in any form without Qorvo’s prior written consent.

Contact Information
For the latest specifications, additional product information, worldwide sales and distribution locations:

Web: www.qorvo.com

Tel: 1-844-890-8163

Email: customer.support@qorvo.com

Important Notice
The information contained herein is believed to be reliable; however, Qorvo makes no warranties regarding the

information contained herein and assumes no responsibility or liability whatsoever for the use of the

information contained herein. All information contained herein is subject to change without notice. Customers

should obtain and verify the latest relevant information before placing orders for Qorvo products. The

information contained herein or any use of such information does not grant, explicitly or implicitly, to any party

any patent rights, licenses, or any other intellectual property rights, whether with regard to such information

itself or anything described by such information. THIS INFORMATION DOES NOT CONSTITUTE A

WARRANTY WITH RESPECT TO THE PRODUCTS DESCRIBED HEREIN, AND QORVO

HEREBY DISCLAIMS ANY AND ALL WARRANTIES WITH RESPECT TO SUCH PRODUCTS

WHETHER EXPRESS OR IMPLIED BY LAW, COURSE OF DEALING, COURSE OF

PERFORMANCE, USAGE OF TRADE OR OTHERWISE, INCLUDING THE IMPLIED

WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Without limiting the generality of the foregoing, Qorvo products are not warranted or authorized for use as

critical components in medical, life-saving, or life-sustaining applications, or other applications where a failure

would reasonably be expected to cause severe personal injury or death.

Copyright 2019 © Qorvo, Inc. | Qorvo is a registered trademark of Qorvo, Inc.

mailto:customer.support@qorvo.com

	OLE_LINK34
	OLE_LINK34
	Doc_Date
	OLE_LINK3
	OLE_LINK4
	OLE_LINK6
	OLE_LINK7
	OLE_LINK40
	OLE_LINK42
	OLE_LINK45
	OLE_LINK51
	OLE_LINK50
	OLE_LINK47
	OLE_LINK53
	OLE_LINK49
	OLE_LINK52
	OLE_LINK43
	OLE_LINK54
	OLE_LINK55
	OLE_LINK56
	OLE_LINK114
	OLE_LINK57
	OLE_LINK58
	OLE_LINK72
	OLE_LINK78
	OLE_LINK64
	OLE_LINK65
	OLE_LINK71
	OLE_LINK69
	OLE_LINK67
	OLE_LINK66
	OLE_LINK76
	OLE_LINK76
	OLE_LINK75
	OLE_LINK73
	OLE_LINK74
	OLE_LINK77
	OLE_LINK79
	OLE_LINK80
	OLE_LINK81
	OLE_LINK82
	OLE_LINK83
	OLE_LINK85
	OLE_LINK88
	OLE_LINK84
	OLE_LINK87
	OLE_LINK97
	OLE_LINK98
	OLE_LINK99
	OLE_LINK100
	OLE_LINK104
	OLE_LINK105
	OLE_LINK107
	OLE_LINK113
	OLE_LINK118
	OLE_LINK119
	OLE_LINK120
	OLE_LINK121
	OLE_LINK122
	OLE_LINK123
	OLE_LINK124
	OLE_LINK125
	OLE_LINK127
	OLE_LINK128
	OLE_LINK129
	OLE_LINK126
	OLE_LINK130

