Qorvo

PAC25140 CANopen Manual

Power Application Controller®
2023-09-29

© 2023 Copyright, Qorvo International, Inc. - 1 - PAC25140 CANopen Manual_v1.0.0

No portion of this document may be reproduced or reused in any form without Qorvo’s prior written consent.

QoMrvo

Contents
Contents

I [T (1 Tox (o] O SRURURP 3
1.1 Short description of CAN and CANOPEN......c..civi it 3
1.2 Features OFf CANOPENNOUE........c..oiiiiiiii ettt bbb 5

p B XS o TSSOSO P PP PRURO 6
2.1 FHIS et bbb Rt b Rttt e b b benne e 6
2.2 Program flow chart (mainline and timer ProCedure)covieeieiieiieese e see s eee e 7
2.3 Reset Node and Reset Communication ProCEAUIES..........cvcveieeiieiiesee e eieeseese et eae e 8
2.4 CAN messages, receiving/tranSMmittingcccciveieiireiiieie i sre e 9
2.4.1 Variables FOr CAN MESSAGESccveeieirieiieeieiteesteateseesteeaesteesteaeesreesseessesseesaeaseesseesseessesreensens 9
2.4.2 ReCEPLION OF CAN MESSAUES. ... vveiveereirreiteeiesttesteesteaeesteesreaseestaesteassesseesseassesseesseansesseesseeneenns 11
2.4.3 TransSmMiSSION OF CAN MESSAGESc.veverueereeieientestestestesie et ss ettt sbe s e e e s b saesbesnesseenes 12
2.5 MAINTING PIrOCEAUIE ..ottt b bbbttt ettt sb e nr e 13
2.6 COB — ComMMUNICALION ODJECLSoiviiiiiieiiiieieie s 14
2.6.1 NMT and network Management....... oo s 14
AT [P T 15
2.6.3 EMERGENCY and error handlingccooereiiiiiiiinieieee e 15
2.6.4 TIME STAIMP ...ttt bbbttt b e bbbt bt e st et b e sbeabenbenneanes 16
2.6.5 PDO — Process Data ODJECLScciiiieiierieiiiieese e see e eee st e ste e e e sre e ssaesaeaeesnaesreenee e 16
2.6.6 SDO — ServiCe Data ODJECES.......ccveiuiiieiecie sttt sae e sreesreenee e 17
2.6.7 HEAIMDEAL ...ttt bbbttt bbb reereenes 18
2.7 ODJECE DICLIONAIYccveeiiitiecie ettt te e te et e et e e e s be e saeenseebeesteeneesreesreenee e 18
2.7.1 Memory types Of VAriabIESccooiiiiiie e 18
2.7.2 Connection between variables and Object DICHIONAIYcccccvreiiiiiiiieeeee e 19
2.7.3 VEITTY TUNCHION ...ttt bbbt b et 19

3. Compiler and Hardware CONNECTIONcviiiiiirieiieiie st 20
B L COMPIIET . bbb bbbttt b e bbbt 20
3.2 HardwWare CONMNEBCTION.uiiieieeieiee e sie e e eeste e teesee e e teenae s e steeseesseenteeneeaseesseenseaneenneennens 20

4. Examples and ODJECt DICHIONAIY..........cuiiiieiiieieite sttt e et 21
4.1 NMT Module Control ProtOCOLccviiiiieiecc e 21
4. 1.1 Start REMOTE NOGEoveiviieiieeeeee ettt bbb ens 21
4. 1.2 RESEE INOUE ...ttt b et e e bbb bbbt e st e s et e et e st e nbeebeabeeneenes 23
4.2. Initiate SDO Upload/DOWNI0adcccveiviiiiieiiecie et 25
4.2.1. Initiate SDO DOWNIOAc..oiiiiiieiiiieiiee ettt st b e sre e 25
4.2.2. Initiate SDO UPIOAQ.........c.ooiiiiiiecii et 27

(@0 1 ot a1 0] 121 1 [0 o OSSR 29

IMPOITANT INOTICE ... bbb bbbttt e e bbb b et beenes 29

© 2023 Copyright, Qorvo International, Inc. - 2 - PAC25140 CANopen Manual_v1.0.0

No portion of this document may be reproduced or reused in any form without Qorvo’s prior written consent.

QoMrvo

1. Introduction

CANopenNode is an Open-Source program written for 8-bit microcontrollers. It can be used in
various devices connected on CAN bus (sensors, input/output units, command interfaces, various
controllers etc.). Program is written according to CANopen standard, so devices can communicate
with other devices based on CANopen.

1.1 Short description of CAN and CANopen

CAN (Controller Area Network) is serial bus system originally developed to be used in cars. It is
also widely used in an industrial automation. Since it is cost effective (it is implemented inside
many 8-bit microcontrollers) it can be used in wide range of applications.

Some features of CAN:

.- cost effective,
- implemented in hardware,

- reliable (sophisticated error detection, erroneous messages are repeated, high immunity to
electromagnetic interference),

- flexible,
- message length: max 8 bytes,
messages have unique CAN identifier,

arbitration without losing time, for example high priority message is send immediately after
current message in transmission,

- datarate (cable length): 10kbps (5 km) to 1Mbps (25m),

for connection of cables no hub or switch is needed. Devices can also be opto-isolated from
network.

CAN reliability (statistic): If a network based on 250kbps operates for 2000 hours per year at an
average bus load of 25% an undetected error occurs only once per 1000 years. [CANopenBook]

CAN is an implementation of lower layers of a communication. But when we need communication
between devices, there are some issues: which identifiers to use, what are the contents of messages,
how to handle errors, how to monitor other nodes, etc. To avoid reinventing the wheel there is
CANopen.

CANopen is one of higher layer protocols based on CAN. It is Open, it means someone can use it
and customize it as he wants. To comply the standard, minimum implementation is required.
Anyway, CANopen offers many useful features, which can be used for good and reliable
communication.

© 2023 Copyright, Qorvo International, Inc. - 3 - PAC25140 CANopen Manual_v1.0.0

No portion of this document may be reproduced or reused in any form without Qorvo’s prior written consent.

QoMrvo

Some features of CANopen:
With standard CAN identifier (11bit), up to 127 nodes can be on one network.

It is not a typical master/slave protocol, so master is not necessary. However, some features can
be used on one node only, for example SDO client. This node is usually used for configuration,
and we can call it a master.

Object Dictionary (OD): Inside OD are sorted variables, which are used by node and are
accessible over CAN bus. OD has 16bit wide index and for each index 8bit wide subindex (for
example variable pevice Type has index 0x1000 and subindex 0x00). Variables can be accessed
via CAN with SDO (Service Data Objects). Variables can be read/write, read/only, etc. They
can be retentive. Length of variables is up to 256 bytes (longer variables are transferred with
segmented transfer). With standard CANopen Configuration tool, which runs on PC, OD is
visible as tree, so device can be easy configured. With Object Dictionary a lot of variables can be
accessed, but it is not the fastest way.

PDO (Process Data Objects) are exchanged between nodes for fast communication. PDO is up
to 8byte wide data object, transmitted from one node to that node, which are set to receive it.
PDO can be send in different ways: periodically in time intervals, on change of state,
synchronous with other nodes, etc. Node can transmit up to 512 PDOs and can receive up to 512
PDOs from other nodes (predefined connection set offers 4 TPDOs and 4 RPDOs).

NMT (Network Management): Include, Boot-up message, Heartbeat protocol, and NMT
message. Each node can be in one of four states: initialization, pre- operational, operational or
stopped. For example, PDOs are working only in Operational state.

Error control — Heartbeat protocol: It is for error control purposes and signals the presence of
a node and its state. The Heartbeat message is a periodic message of the node to one or several
other nodes. Other nodes can monitor if specific node is still working properly. (Besides,
Heartbeat protocol there exists an old and out-dated error control services, which is called Node
and Life Guarding protocol.)

Emergency message is sent in case of error or warning in node.

For understanding CANopenNode further knowledge is required.
Microcontroller, C programming and CANopen protocol must be understood.

© 2023 Copyright, Qorvo International, Inc. - 4 - PAC25140 CANopen Manual_v1.0.0

No portion of this document may be reproduced or reused in any form without Qorvo’s prior written consent.

QoMrvo

1.2 Features of CANopenNode

Macros for configuration: Features can be configured with macros in CO_OD.h file. If
feature is reduced or disabled, program and memory size is reduced.

CAN bit rates: 10, 20, 50, 100, 125, 250, 500, 800, 1000 kbps; oscillator frequencies: 4,
8, 16, 20, 24, 32, 40, ... MHz; 8-bit Microcontroller can be stable also on 100% bus load on
1000 kbps bit rate.

CANopen conformance: Comply to [CiADS301], [CIADR303-3]. Works with standard
frame format (11bit identifier). Possible is RTR bit.

Service Data Objects (SDO): SDO server and SDO client is implemented, expedited and
segmented transfer. Variables can be long up to 256 bytes.

Object dictionary (OD): It has two sides:

1. CANopen side: Variables are accessed through index, sub-index and length via SDOs (read
only, read/write etc.). Before written to memory, they can be verified for correct value.

2. Program side: Variables have ordinary names (no index, sub-index). They can be in RAM
Memory space, EEPROM or Flash Program space. EEPROM and Flash variables are
retentive (keep value after power off) and can be changed via SDOs. Implementation is
simple, fast and flexible.

Process Data Objects (PDO): Implemented are TPDOs and RPDOs. Synchronous
Transmission is automatic, other methods are possible. Parameters are COB-ID,
Transmission Type, Inhibit time and Event timer. Mapping is static and must be 'hand made'.
Length of PDO is calculated from Mapping.

SYNC object: Producer or consumer with 1ms accuracy.
Network management (NMT): Implemented, can operate with or without NMT master.

Heartbeat / Node guarding: Heartbeat producer and consumer. (Monitoring of presence
and NMT state of multiple nodes implemented). Node guarding is not implemented.

User CAN messages: Freely usable RX or TX CAN messages.

Error control: Emergency objects are used. Mechanism to catch different errors is
implemented. For each error occurred, different flag bit is set and Emergency message is
sent. According to flag bits, error register is calculated and device can be put in pre-
operational. All Errors can be easily tracked through Object Dictionary Entry (index
0x2100). This mechanism can also be used for user defined errors.

Status LED diodes: Green and Red diodes according to [CIADR303-3].

Example for Generic Input/Output device: Digital 1/O, Analog 1/0, Change of state
transmission with event and inhibit timer. According to device profile CIADS401.

© 2023 Copyright, Qorvo International, Inc. - 5 - PAC25140 CANopen Manual_v1.0.0

No portion of this document may be reproduced or reused in any form without Qorvo’s prior written consent.

QoMrvo

2. Design
CANopenNode is currently applied for PAC25140 BMS.

Implemented is CANopen and frame for user program. Goal is to be simple, powerful and open for
extensions.

CANopenNode is Open Source. License used is LGPL, that means license acts only on library, not on
complete user program.

2.1 Files
» ...\pac25xxx\CANopenNode (folder) — CANopenNode source code. It includes the
documents and source files for CANopen with example:

» doc (subfolders) — documentation:

CANopenNode Manual.pdf — This manual in pdf format.
» stack (subfolders) — includes code files for majority protocols of CANopenNode:
» Emergency

» HBconsumer
» Heartbeat

» PDO

» SDO

» SYNC

» Other files — license and source files:

» CANopen.h —main CANopen header file. Included are general definitions and
other headers.

» CANopen.c —main CANopen processor and configuration.

» CO_driver.h—Processor / compiler specific macros.

» CO_driver.c—Processor / compiler specific functions.

» CO_OD.h - header for Object Dictionary and main setup for CANopenNode.

» CO_OD.c - variables, verify function and Object Dictionary for CANopenNode.

» LICENSE-GNU GENERAL PUBLIC LICENSE file.

© 2023 Copyright, Qorvo International, Inc. - 6 - PAC25140 CANopen Manual_v1.0.0

No portion of this document may be reproduced or reused in any form without Qorvo’s prior written consent.

QoMrvo

2.2 Program flow chart (mainline and timer procedure)
CANopenNode program execution is divided into three(four) tasks:

1. After startup, basic task is mainline. It is executed inside endless loop. In co process
function not-time-critical program code is processed. All code is non-blocking.

2. Second task is Timer procedure which is triggered by interrupt and is executed every 1
millisecond. Here is processed time-critical code. Code must be fast. If execution time is longer
than 1ms, overflow occurs, error bit is set and Emergency message is sent.

3. Third and fourth tasks are CAN transmit/receive interrupts. CAN receive interrupt must have
priority over timer procedure.

Fields with blue background are functions, where user code can be written. Besides, that user can
define other interrupts (and in multitasking systems other tasks, of course).

main() CO_TimerProcess ()
Execution every millisecond

Reset_Node]
increment
CO_timerlms
A4) J
" handle variables:
ca CO_SYNC_process
CO_process() CO_SYNC_counter

i ,

call if active, then
bms_process_running(produce SYNC

]

A

call
User_Processimslsr()

A

PDO transmission

Picture 2.1 — Flow chart for mainline and timer procedure

© 2023 Copyright, Qorvo International, Inc. - 7 - PAC25140 CANopen Manual_v1.0.0

No portion of this document may be reproduced or reused in any form without Qorvo’s prior written consent.

QoMrvo

2.3 Reset Node and Reset Communication procedures

In CANopen two different resets are defined: 'Reset Node' and 'Reset Communication'. Both can be
triggered with NMT command from NMT master node. First reset is complete processor reset and is
executed also after processor bootup, second is partial reset and is used for communication reset. In
co rResetcomm() all CANopenNode specific variables are setup. So, for example if PDO
communication parameters has been changed, 'Reset Communication' must be performed for

changes to take effect.

Fields with blue background are functions, where user code can be written.

Reset_Node
Called immediately after
processor bootup

CO_ResetComm()

Called inside CO_Init() and

after NMT command:

'Reset Communication’

Call
User_Init()

Read Node-ID and
CAN Bit Rate from
external function

Y

Y

Call
CO_Init()

Setup
CANopenNode specific
variables

Y

A J

Call
CO_ResetComm()

Call
User_ResetCommy()

Y

Y

Initialize and start
Timer procedure and
Interrupts

Setup
CO_RXCAN[] and
CO_TXCAN]] arrays

/

Initialize
CAN hardware

Picture 2.2 — Reset Node and Reset Communication procedures

© 2023 Copyright, Qorvo International, Inc. - 8 -

PAC25140 CANopen Manual_v1.0.0

No portion of this document may be reproduced or reused in any form without Qorvo’s prior written consent.

QoMrvo

2.4 CAN messages, receiving/transmitting

Receiving and transmitting of CAN messages is made with interrupt functions. These functions are
hardware specific. They have integrated some CANopen specific code.

2.4.1 Variables for CAN messages

Main variables for CAN messages are co CaNmodule rxArray0[] & CO CANmodule txArray0[]
arrays (rx = receive, tx = transmit). Number of members in each array is equal to number of
different CANopen communication objects (COB=communication object). Everything in
CANopenNode 'turns around' these two arrays. For description, which COBs are used in each

array, see CAN_driver.h file.
static CO_CANrx t *CO_CANmodule rxArray0;
static CO_CANtx t *CO_CANmodule txArray0;

Type of one element in each array is described below:
typedef struct{

union{
uint32 t RXBUFO;
struct{
unsigned DLC :4;
unsigned 22
unsigned RTR :1;
unsigned FF :1;
unsigned ident :16;
unsigned datalO :8;
}i
}i
uint8 t datal8];
}CO_CANrxMsg t;
typedef struct({
union({
uint32 t TXBUFO;
struct{
unsigned DLC 24,
unsigned 12
unsigned RTR 1
unsigned FF 1
unsigned ident :16;
unsigned datalO :8;
bi
bi
[...]
uint8 t data([8];

volatile bool t bufferFull;
volatile bool t syncFlag;
}CO CANtx_ t;

Besides, there are 2 communication flags are declared in CO_driver.h:
typedef struct({
[...]

volatile bool t bufferInhibitFlag;
volatile bool t firstCANtxMessage;

}CO_CANmodule t;

© 2023 Copyright, Qorvo International, Inc. - 9 - PAC25140 CANopen Manual_v1.0.0

No portion of this document may be reproduced or reused in any form without Qorvo’s prior written consent.

QoMNvo

ident IS CAN message standard identifier aligned with hardware registers. It includes 11 bit COB-
ID and Remote Transfer Request bit (RTR). For alignment use macros co canNinterrupt () from
CO_driver.c. Message is received if CAN-ID and RTR are matched.

prc is length of data in message (CAN uses O to 8 bytes). For receiving there is a special rule: if
value is greater than 8, length of message is not checked and thus message with any length is
accepted.

firstCANtxMessage IS a flag: for reception this bit is set when new message has received, for
transmission this bit 'informs’ tx interrupt procedure, that this message is ready to be sent.

firstCANtxMessage flag has different meaning. For reception, data from new message received
from bus are not copied if (bufferInhibitFlag==1 AND firstCANtxMessage==1). For example,
if old message was not read yet, new message is lost. For transmission, flag is used for synchronous
TPDO messages. Message is destroyed and is not send over CAN, if bufferInhibitFlag==1
AND time is outside SYNC window (OD, index 1007h).

data is 8 bytes of CAN data.

At communication reset first whole array is cleared and then all values except Data are initialized
(inside co rResetcomm() function). This way minimal data copying is achieved, and no other
buffers are needed.

© 2023 Copyright, Qorvo International, Inc. - 10 - PAC25140 CANopen Manual_v1.0.0

No portion of this document may be reproduced or reused in any form without Qorvo’s prior written consent.

QoMNvo

2.4.2 Reception of CAN messages

CANopen uses many different CAN identifiers, so hardware filtering of messages cannot always be
used. Instead, filtering is implemented in software. Principle is the following: Identifiers for all
COBs, used with current configuration, are written in co_canmodule rxArray0[] array at startup.
When new message arrives from CAN bus, co caNinterrupt () interrupt is triggered and array is
searched from first to last element. If both COB-IDs, from message and array, are matched,

message goes into further processing. If not, interrupt exits.

This interrupt must be high priority and must have low latency, because many messages must be
filtered out. In CANopenNode it is implemented with fast assembly code, so there is no problem

even with high CAN bit rates and high bus load.

Received messages are then handled inside different functions. Details will be described in next

chapters.

© 2023 Copyright, Qorvo International, Inc. - 11 -

No portion of this document may be reproduced or reused in any form without Qorvo’s prior written consent.

CO_CANinterrupt () - interrupt
Triggered when new message
from CAN bus has received.

Search
CO CANmodule rxArrayQ[]

array for equal ident

l

Was
ident matched

NO

Verify DLC and
Inhibit

Set firstCANtxMessage
flag and copy Data

A

Picture 2.3 — Reception of CAN messages

PAC25140 CANopen Manual_v1.0.0

QoMNvo

2.4.3 Transmission of CAN messages

Function, which wants to send CAN message, first prepares adequate co caNmodule txArray0[]
array element: writes Data and, if necessary, it can also modify other parameters. Then it calls
co_cansend () function. If CAN TX buffer is free, message will be sent immediately, otherwise it
will be marked, and interrupt will send it. Messages with lower index (CO CANmodule txArray0
[index]) Will be send first.

CO_CANsend (index) Called
from mainline or timer
function.

CO_CANinterrupt () -
interrupt Triggered when
previous message was

successfully sent.

Was NO
previous message clear CANRX
sent interrupt flag

Is CAN NO NO
TX buffer Is CANtxCount > 0
idle *
Set firstCANtxMessage
YES flag and increase variable
CANtxCount

(0))]

earch CO_TXCAN][] which
element has
irstCANtxMessage flag set

—h

Copy Message to
CAN reqisters

Y

. Y

Copy message to
CAN registers

/

Erase firstCANtxMessage
flag and decrease variable
CANtxCount

Picture 2.4 — Transmission of CAN messages

© 2023 Copyright, Qorvo International, Inc. - 12 - PAC25140 CANopen Manual_v1.0.0

No portion of this document may be reproduced or reused in any form without Qorvo’s prior written consent.

QoMrvo

2.5 Mainline procedure

As mentioned in chapter 2.2, there are two 'tasks' handling CANopen messages. Timer procedure is

shorter and is described in that chapter, mainline procedure is described here.

co_process () Isexecuted inside endless loop. There is processed program code, which is not time-
critical. All code is non-blocking. Sometimes a lot of code has to be processed, so this can lead to
longer delays and longer execution cycle. For example, SDO communication is very time

consuming.

In same loop also user function bms process running() IS processing. There can also be time

consuming and not-time-critical code. Anyway, blocking functions must not be used.

CO_ProcessMain()

Executed cyclically from mainline

v

Update
timer variables

SDO server
state machine

Y

Y

Call CO_ProcessDriver()
for microcontroller
specific code

Handle
Heartbeat consumer
messages

i

/

Verify if new
NMT message received
and execute command

Produce
Heartbeat message

Y

Y

Handle errors,

calculate Error_Register

Emergency message and

Handle
CANopen status LEDs

Picture 2.5 - Flow chart of CANopenNode mainline procedure

© 2023 Copyright, Qorvo International, Inc. - 13 -

PAC25140 CANopen Manual_v1.0.0

No portion of this document may be reproduced or reused in any form without Qorvo’s prior written consent.

QoMrvo

2.6 COB — Communication Objects

Pre-defined Connection Set in CANopen connects Communication Objects with their identifiers. It
applies to the standard CAN frame with 11-bit Identifier. Especially for PDOs it is not the rule to
use Pre-defined values.

Object COB-ID

NMT SERVICE 000h

SYNC 080h

EMERGENCY 080h + NODE 1ID
TIME STAMP 100h

TPDO1 180h + NODE ID
RPDO1 200h + NODE ID
TPDO2 280h + NODE ID
RPDO2 300h + NODE 1ID
TPDO3 380h + NODE 1ID
RPDO3 400h + NODE ID
TPDO4 480h + NODE 1ID
RPDO4 500h + NODE ID
TSDO 580h + NODE ID
RSDO 600h + NODE ID
HEARTBEAT 700h + NODE ID

Table 2.1 — Pre-defined Connection Set

2.6.1 NMT and network management

Network management is detailed in CANopen standard. In general, each node has 4 possible states:
Initialization, Pre-Operational, Operational and Stopped. In Operational state, all communication is
allowed. In Pre-Operational state, all communication is allowed, except PDOs. In Stopped state,
only NMT messages can be received and processed. Handling those states is quite tricky, especially
if reliable communication is required.

By default, node enters Operational state after bootup. This is set with variable 'NMT startup’ in
Object Dictionary at index 0x1F80. If bit 2 is set, node will start Pre-Operational after bootup.

There is another issue. If there is an error in the node, node sometimes should not enter into
Operational. This happens, when Error Register (OD, index 0x1001) is set. More about that is in
'EMERGENCY' chapter.

In CANopenNode received NMT messages are handled in co process () function. According to
command, actions are triggered. NMT master can be easily implemented with user defined CANTX
message. NMT master can send specific NMT command to single node or to all nodes (broadcast).

© 2023 Copyright, Qorvo International, Inc. - 14 - PAC25140 CANopen Manual_v1.0.0

No portion of this document may be reproduced or reused in any form without Qorvo’s prior written consent.

QoMrvo

2.6.2 SYNC

SYNC message is useful for synchronization. One node on the network sends it periodically in
constant time intervals. It can be used for different purposes, one of them is using Synchronous
PDOs.

SYNC message is integrated into CANopenNode. It is handled inside Timer procedure. Basic time

unit is 1 millisecond. CANopenNode can be a producer or consumer. There are two useful variables
related to SYNC: co syNC process and co syNCcounter (type unsigned int). co syNC process IS
incremented each millisecond and reset to zero, each time SYNC is received/transmitted.
CO_SYNCcounter IS incremented each time, SYNC is received/transmitted.

2.6.3 EMERGENCY and error handling

Error handling is very useful thing in practical implementation of network. In testing phase there
can be some bugs in software and even some errors in electronic or mechanic parts of network. With
error handling many of those errors can be tracked.

In CANopenNode error handling is made simple. In general when error occurs in a node, node
should not crash, it should operate further.

Principle is the following: if somewhere in program occurs error (certain condition is met),
co_errorReport () function is called, which just sets some variables. When in turn, error handling
is processed inside co process () function. All Error handling specific definitions are collected in
ﬁ|8CO_Emergency.h.

Following function accepts two parameters:

void CO_errorReport (CO _EM t *em, const uint8 t errorBit, const uintl6_t
errorCode, const uint32 t infoCode);

errorBit IS unique for each different error situation, code is customer specific additional
information about the error. As said before, this function just sets some variables, besides others it
sets appropriate bit in errorstatusBits[] array. If that bit was already set before, nothing
happens. This way specific error is reported only the first time, later repeating is ignored. Opposite
function to co errorReport () IS CO_errorReset (), Where specific bit is cleared if error is solved
somehow.

If new error occurred, procedure inside co process () function verifies new situation. First, Error
Register (OD, index 0x1001) is calculated from errorstatusBits([] array. Then EMERGENCY
message is sent. Emergency is also written to history (OD, index 1003).

EMERGENCY message is 8 bytes long. First three bytes are standard: First two bytes are
Emergency Error Code, Third byte is Error Register. 4" byte is Errorrit and 5M-6" bytes are Code
from co_errorreport () function. 7" and 8" byte can be user specific.

Each bit in 1-byte long Error Register is calculated from state of errorstatusBits[] array. See
CO_errorRegisterBitmask t MACrosin co Emergency.h file. When Condition for specific bit is
met, that bit is set and vice versa. In some cases, those conditions can be more restrictive, in other
cases not.

If Error Register is not equal to zero, node is prevented to be in Operational state, and PDOs cannot
be transmitted or received.

Ifmacroop errorstatusBits inco op.h fileissetto 1, Communication error bit in Error register
will not prevent node to be in Operational state. In this case node will always stay operational, even

© 2023 Copyright, Qorvo International, Inc. - 15 - PAC25140 CANopen Manual_v1.0.0

No portion of this document may be reproduced or reused in any form without Qorvo’s prior written consent.

QoMNvo

if disconnected from network.
2.6.4 TIME STAMP

Not implemented in CANopenNode.
2.6.5 PDO - Process Data Objects

Process Data Objects are optimized for frequent transmission of Data over the network. In
comparison with Service Data Objects they are faster, shorter, no protocol overhead and need no
answer. Whole 8-bit wide CAN data field is used for Process Data.

CANopen uses two parameters for setup PDOs: PDO Communication Parameters and PDO
Mapping Parameters. For proper using of PDOs understanding of them is required. They are
described in other Literature.

Mapping parameters describes which data from Object Dictionary are used for specific PDO. In
CANopenNode all mapping is static, this means that mapping cannot be changed, after program is
build. In CANopenNode mapping parameters are used for calculating length of PDOs. When
RPDOs are received, length must match to that specified in mapping or RPDO will not be
processed and emergency will be sent first time. If mapping parameters are disabled by disabling
macro rRppoMapPar, length of TPDOs will be fixed to 8 bytes and any length of RPDO will be
accepted. Mapping parameters can also be disabled in CO_OD.h file. In this case, TPDO length will
be fixed to 8 bytes and any RPDO length will be accepted.

Communication Parameters describes CAN ID for PDO communication object (COB-ID),
Transmission Type, Inhibit time and Event timer.

COB-ID on transmitting node must match COB-IDs on all receiving nodes. On CANopen is only
one rule for COB-IDs: There must not exist two equal COB-IDs on one network for transmitted
messages. Anyway, CANopen has pre-defined connection set, where for 4 TPDOs and 4 RPDOs
COB-IDs are defined. In CANopenNode standard or custom values can be used. If bit 31==1, PDO
IS not used.

Transmission Type describes, when PDO will be transmitted. There are more possibilities: Time
intervals, Change-of-state, combination of them, after Remote transmission request (rtr — CAN
feature), or synchronous after SYNC message.

PDO transmission in CANopenNode

Many options are possible.

Synchronous transmission is implemented in CANopenNode. Messages are transmitted
automatically after every n-th SYNC message (n = value of Transmission Type variable 1 ... 240). It
is predictable.

Event timer sends message in time intervals and is automatic in CANopenNode.

One possibility is combination of Change-of-state and (longer) Time intervals. This is good in
cases, where changes are not very often. Advantage is fast response and low traffic. Problems are for
example with values from analog sensors, where least significant bit changes often. This leads to
many unnecessary messages. Another problem is that bus load cannot be always predicted. This
method is used in Example with generic 1/O.

Data, which are sent with TPDO, must be written manually before PDO is sent. They must be
written in array co->Tppo[i], where index is PDO number (0 is first PDO).

To send PDO manually, just call the following function:
intl6 t CO TPDOsend(CO TPDO t *TPDO) ;

where =Tppo is PDO number (0 is first PDO). If return == 0, transmission was successful.

PDOs are (and may be) transmitted only when node is in Operational state.
© 2023 Copyright, Qorvo International, Inc. - 16 - PAC25140 CANopen Manual_v1.0.0

No portion of this document may be reproduced or reused in any form without Qorvo’s prior written consent.

QoMrvo

PDO reception in CANopenNode

When PDO arrives from CAN bus, it is memorized. Anyway, PDOs may only be used when node is
in Operational state.

RPDO data can be read from co->rppo[i] array, where index is PDO number (0 is first PDO).
Cco_RPDO New (i) array elementissetto 1 every time PDO is received. User may manually erase it.

User must pay attention on one issue: PDO is received with high priority interrupt, so if user reads
data and interrupt occurs during read, data can be unpredictable. So, during read, CANrx interrupt
should be disabled (see co driver.h).

Another issue is rule in CANopen standard, where synchronous PDOs must be processed after next
SYNC message. But after next SYNC message also next RPDO can arrive and overwrite old PDO.
Solution is: inside Timerlms procedure save all new RPDOs to different location except if
CO_SYNC process == 0. If so, process previously copied RPDOs.

There is no control, if node is in operational state, received PDO is saved always.

To make sure PDO reception is working correctly, following conditions must be met before read of
RPDO Data: Both, this node and transmitting node, must be in operational state. Checking of
CO_RPDO New (i) IS thus not necessary. For scanning other nodes use Heartbeat consumer.

2.6.6 SDO — Service Data Objects

With SDO whole Object Dictionary of any node on the CANopen network can be accessed. SDO
client (master) have access to SDO servers on other nodes.

SDO server is integrated in CANopenNode. Maximum variable length can be set from 4 ... 256
bytes. If max. length is 4 bytes, then only expedited transfer is used. Otherwise, segmented transfer
is used and more flash memory is consumed. More than 1 SDO channel can be used.

Also, SDO client non-blocking functions are available, so CANopenNode can be used as master
too. For example how to use them, see functions co spoclientDownload () and
CO_sSDOclientUpload().

SDO communication have access to many variables, but it is not very fast. It is quite time
consuming especially in PIC microcontrollers. But it is very powerful for setup the node.

Design in CANopenNode: SDO server is a state machine implemented inside mainline function.
When new SDO object arrives from client, it is processed and some static variables are set.
According to command and state it: searches Object Dictionary (OD) for entry with correct index
and subindex, make verifications, send aborts if necessary, collect data segments, reads or writes to
variables from OD, etc. For CANopenNode user no detailed knowledge about SDO objects is
needed.

© 2023 Copyright, Qorvo International, Inc. - 17 - PAC25140 CANopen Manual_v1.0.0

No portion of this document may be reproduced or reused in any form without Qorvo’s prior written consent.

QoMNvo

2.6.7 Heartbeat

Heartbeat protocol is used for monitoring proper operation of remote nodes. In CANopenNode are
implemented Heartbeat producer and consumer. Old-dated Node Guarding is not implemented.

With Heartbeat no master is needed and each node can monitor nodes, which are important for it.

To setup Producer, corresponding entry in OD must be edited. Node will produce periodic Heartbeat
messages.

Heartbeat consumer monitors presence and state of nodes defined in corresponding entry in OD.
Monitoring starts after reception of the first Heartbeat from specified node. If Heartbeat does not
arrive in specified time, emergency message is generated. Heartbeat consumer time value should be
set to 1,5 * Heartbeat producer time value on remote node. State of remote node can be read from
CO_HBcons->NMTstate (i) array.

2.7 Object Dictionary

One of the most powerful features of CANopen is Object Dictionary. It is like a table, where are
collected all network-accessible data. Each entry has 16bit index and 8bit subindex. Data type of
each entry can be different - from 8 bit unsigned to string.

In CANopenNode Object Dictionary is an array of entries co op(]. Each entry has an information
about index, sub-index, attribute (read only, read/write etc.), length and pointer to data variable.
There are “Two sides” of Object Dictionary:

1. Program side: Variables have ordinary names (no index, subindex) and types.

2. CANopen side: Ordinary variables are collected in co op(] array and so SDO server have access
to them through index, sub-index and length (read only, read/write etc.).

2.7.1 Memory types of variables

In CANopenNode three types of variables are used in Object Dictionary:
Variables allocated in program memory flash space (ROM variables).
Variables allocated in RAM space.
Variables allocated in RAM space and saved-to/loaded-from EEPROM.

1. Features of ROM variables:
Keep value after power off.
Initialization values are written when chip is being programmed.
Readable as usual variables.
Writable in run time with SDO objects.
Writing to variable by user program is not possible directly.
Possible problem: if device resets during write data can be corrupted.

© 2023 Copyright, Qorvo International, Inc. - 18 - PAC25140 CANopen Manual_v1.0.0

No portion of this document may be reproduced or reused in any form without Qorvo’s prior written consent.

QoOMNvo

2. Features of RAM variables:
Classic read/write.

After power off value is lost.
3. Features of EEPROM variables:
Variables are read from (written to) RAM (allocated inside CO_OD_EEPROM structure).
At chip initialization values are read from EEPROM.
- At run time background routine compares RAM and EEPROM and saves byte by byte.
- Classic writing to variable by user program.

- Possible problem: if microcontroller resets during write: multi byte variable can be
corrupted.

Reading and writing to different types of variables is processor specific, so these two functions are
different for different microcontroller. They are placed in co driver.c file.

2.7.2 Connection between variables and Object Dictionary
To each variable is assigned one entry of co op[] array;
Entry holds information about index, subindex, length and pointer to variable.

- When SDO server wants to find entry (with specific index and sub-index) inside object
dictionary, it calls const co op entryRecord t and function returns pointer to that entry.

2.7.3 Verify function

Function verifyopwrite () is called from SDO server, when a write to Object Dictionary entry is
in progress. Function is called when data, that came from network are known. Function verifies if
data value is correct and then returns SDO Abort Code. If returns 0, data are correct and are written
to Object Dictionary. Function does not verify length - it is verified by SDO server.

© 2023 Copyright, Qorvo International, Inc. - 19 - PAC25140 CANopen Manual_v1.0.0

No portion of this document may be reproduced or reused in any form without Qorvo’s prior written consent.

QoMrvo

3. Compiler and Hardware connection
Main hardware specific files are:
main.c — initialization and definition for interrupt, timerlms and main functions.
CO_driver.h —Processor / compiler specific macros.
CO_driver.c—Processor / compiler specific functions.
These files contain:
Base for main and interrupt functions.
Different software and interrupt enable/disable macros.
Function for reading Node-ID and Bitrate from hardware.
Function for initialization of CAN controller.
Function for writing message to CAN controller.
Interrupt for receiving messages from CAN controller and identifying them. It must be fast.
Handling errors from CAN controller.
Read/write data from/to Object Dictionary. Data can be in RAM or in ROM memory.
Handling EEPROM variables.

3.1 Compiler

The PAC25140 contains an Arm Cortex-M4F. CANopenNode is applied for it with integrated CAN
module.

Compiler used is GNU Arm on Eclipse IDE v4.27.

Memory types used are RAM, ROM and EEPROM. Read/write via SDO is fully supported.
ROM variables uses program flash memory and utilizes self-programming feature.

EEPROM variables are on startup read from internal EEPROM to RAM.
If RAM is changed EEPROM is automatically updated.

3.2 Hardware connection
PLL setting: 50MHz
CAN baud rate setting: 125kbps.

PAC25140 device connect to CANalyst-11 module via CAN transceiver, connection as below:

PAC25140 CAN transceiver CANalyst-11
VCC33 (3.3V) 3Vv3

GND GND

GPIOE.P2 RXD

GPIOE.P3 TXD

= CANH CAN1H

- CANL CAN1L

© 2023 Copyright, Qorvo International, Inc. - 20 - PAC25140 CANopen Manual_v1.0.0

No portion of this document may be reproduced or reused in any form without Qorvo’s prior written consent.

QoMrvo

4. Examples and Object Dictionary

4.1 NMT Module Control protocol

— NMT Message
CAN D Data
Byte 0 Byte 1
000 <CMD> <NodeID>

<CMD= Meaning

01 Switch to the "Operational” state

02 Switch to the "Stop” state

80 p Switch to the "Pre-Operational” state
81 p Reset Node

Reset Communication

[we]
]
)

4.1.1 Start Remote Node
1. After connecting PAC25140 to CANalyst-I1, open CANPro Analyzer.
2. Select [Start] on the taskbar.

B v | Show Mode: Shov. = | CAN Indec @ CAMI ® CANZ © CANZ CANM |§ = []

© Time Show - Show Type - = Send Data I Trigger Setting " Enable Trigger 'O Hide Send Frame 3 Configure Protecel QiManage Profocols

Index Diroctio Time Mark Stahu Message Description Meszage Confent CAN Frame
|:;E[m;cu::;emum Erroe Information Time
_ Send: 0 Raceive: 31 Normal 5 'lWDlu- ||
© 2023 Copyright, Qorvo International, Inc. - 21 - PAC25140 CANopen Manual_v1.0.0

No portion of this document may be reproduced or reused in any form without Qorvo’s prior written consent.

QOP\'O

Select the Baud-rate: 125kbps, then press [OK].

Hcmpm [CANopen (script)]

Fle Operation View Window Help Language .
S & NSt 4 @ 7] ShowMode: Show~ CAN Index: ® CAN1 ® CAN2 © CAN3 CAN4 | M e stans J§
. “CAN- CANopen (script) +Default+ -4CAN- o
@xat 0 8 & © Time Show- Show Type- = Send Data & Trigger Setting * Enable Trigger O Hide Send Frame B Configure Protocol hManage Protocols
Index Directio Time Mark Statur Message Desaription Message Content CAN Frame L
Open Device x|
Device Type: CANalystll © Devicelndex O
CAN1 | CAN2
AccCode:0x 00000000 MaskCode:Ox FFFFFFFF
Baudrate: | 125bps . BTRO 2
Use Custom Baudrate BTRIOx '©
Filer: SingleFiter * Mode; Nomal
E

‘ a .
Bus Error(CAN1) x|
Index Emor Desaription |Error Information Time 5

Send:0 Receive:31 Normal S Trigger Disa

4. Select [Send Data] = 4.1. In the send data window Select Message [NMT Module Control] >
4.2. Set DLC:2 - 4.3. Select NMT command [Start Remote Node], Note ID: 0x23-> 4.4. Send
Immediately.

B8 cANPro - [CANopen (script)]

File Operation View Window Help Language -CANopen- Send Data (CAN1)

LI EE N TR |) ~| CANIndex: © CAN1 ® CAN2 © (A3 AN [§ mBus Status | Message Seling

. -CAN- CANopen (script) +Default+ -ICAN-

@Hait 0 ® a8 © Time Show- Show Type- wSend Data & Trigger Setting % Enable Trigger OHide Send Frame M Configure Po Message: NMT Module Control @ - The CAN Frame:

Index Directio Time Mark Status Message Desaription Message Content

P P i Node ID| Node Status In.. Segment Name Segment Value ~1 Frame Type Standard Fr -

4 eceive 19:12:07.104 NMT Error Control o2 | Precousions T T T ath .
Node ID| Node Status il L o [vad |

5 Receive 19:12:07.431 NMT Eror Control :
0x23 | Pre-operational Dox ©
Node ID| Node Status

6 Receive 19:12:07.757 NMT Error Control : ol 2
0x23 | Pre-operational 2
Node ID| Node Status DATA:: @

7 Receive 19:12:08.09 NMT Error Control :
0x23 | Pre-operational 0123

NMT Command | Node ID
Start Remote Node | 0x23

8 Send 19:12:08.284 Succe NMT Module Control

Send Setling
PDO Object| Node ID| PDO Dat:
9 Receive 19:12:08.301 DO o ! . Send Type: Normal Send
PoOI(¢E)| 023 | o
Node ID| Node Status Number Of Frames: ! Interval: 1 me SendTimes: !
10 Receive 19:12:08.427 NMT Error Control
0x23 | Operational
11 Receive 19:12:08.753 NMT Error Control NodeTo) Nods Sskis @ Senid immedisiely 'Add Totint Send From Soript
0x23 | Operational Send List
12 Receve 19:12:00.004 NMT Esror Control Node ID| Node Status In.. Send.. MessageDes.. Message Con.. CAN Frame Fr.. Ti.. Inte..
0x23 | Operational *1 Normal... Initiate SDOU... Node ID="0x0 ... Frame ID:0000... 1 1 1
, >
Node ID| Node Status 2 Normal... Iniiate SDOU... Node ID="0x2... Frame ID:0000... 1 1 1
13 Receive 19:12:09.420 NMT Error Control
023 | Operational
Node ID| Node Status
14 Receive 19:12:09.761 NMT Error Control
0x23 | Operational
Node ID| Node Status
15— Oncohn_10:42:90.006 N Erroe Contre
Bus Error(CAN1)
Index Error Description Error Information Time Delete Send Cycle Times: !

Seno: 1 KECeIve: 540 NOrmal S | nigger Uisa

© 2023 Copyright, Qorvo International, Inc. - 22 - PAC25140 CANopen Manual_v1.0.0

No portion of this document may be reproduced or reused in any form without Qorvo’s prior written consent.

QOP\'O

Node Status is change from [Pre-Operational] to [Operational].

B8 canPro - [CANopen (script)]
_ File Operdtion View Window Help Language

Frame 1D:00000723 Data Frame Standard Frame DLC:01 Data: 7F

Frame ID:00000723 Data Frame Standard Frame DLC:01 Data:7F

Frame 10:00000723 Data Frame Standard Frame DLC:01 Data: 7F

Frame 1D:00000723 Data Frame Standard Frame DLC:01 Data:7F

Frame 1D:00000000 Data Frame Standard Frame DLC:02 Data:01 23

Frame 1D:000001A2 Data Frame Standard Frame DLC:01 Data:01

Frame [D:00000723 Data Frame Standard Frame DLC:01 Data:05

Frame 1D:00000723 Data Frame Standard Frame DLC:01 Data:05

Frame 1D:00000723 Data Frame Standard Frame DLC:01 Data:05

Frame 1D:00000723 Data Frame Standard Frame DLC:01 Data:05

Frame [D:00000723 Data Frame Standard Frame DLC:01 Data:05

Eeama 100000712 Dobs Erama Crandard Erama A 101 Maka-nE

d s dsaiaz] <. CAN Index: © CAN1 ® CAN2 114§ Bus status |
. “CAN- CANopen (script) +Defaults -iCAN-.
| @Hat © ® %l © Time Show- Show Type: = Send Dota & Trigger Setting % Enable Trigger @ Hide Send Frame 5 Configure Protocol \Manage Protocols
[index Directio Time Mark Status Message Desaription Message Content CAN Frame
Node ID| _ Node Status
4 Receive 19:12:07.104 NMT Error Control -
1 023 | Pre-operational
Node ID| Node Status
5 Receive 19:12:07.431 NMT Error Control
b 023 Pre-operational
Node ID| Node Status
6 Receve 19:12:07.757 NMT Error Control
023 | Pre-operational
Node Ne
7 Receive 19:12:08.099 NMT Error Control 1D _Neds ey
023 | Pre-operational
NMT Command | Node ID
8 Send 19:12:08.284 | Succe NMT Module Control
Start Remote Node | 0x23
PDO Object | Node ID | DO Data
9 Receve 19:12:08.301 POO
pooi(¢E)| 023 | oa
E Node ID| Node Status
10 Receive 19:12:08.427 NMT Error Control T
023 | Operational
4 Node 1D Node Status
11 Receive 19:12:08.753 NMT Error Control
023 | Operational
Node ID Node Status
412 Receive 19:12:09.004 NMT Error Control
0:23 | Operational
Node ID| Node Status
13 Receive 19:12:09.420 NMT Error Control
1 0:23 | Operational
Node ID| Node Status
14 Receive 19:12:09.761 NMT Error Control
4 023 | Operational
| 15 Dacohm. 10:12:10.006. NMT_Eerne Contonl Node ID, Node Status
&
| Bus Emor(CANY)
Index Error Description | Error Information Time

Protocol:
- Frame ID: 00000000
- CAN ID: 000
- Data Frame: 01 23

Receive:1986

- CMD: Start Remote, Node ID: 0x23

4.1.2 Reset Node

Similar with Start Remote Control for step 1-3.

Normal S Trigger Disa

4. Select [Send Data] - 4.1. In the send data window Select Message [NMT Module Control] >
4.2. Set DLC:2 - 4.3. Select NMT command [Start Remote Node] - Note ID: 0x23 - 4.4. Send

Immediately.

B8 CANPro - [CANopen (script)]

File Operation View Window Help Language -CANopen- Send Data (CAN1) il *
CIEERT N I | ~ CANIndex: ® CAN1 ® CAN2 i1 | =ous sy
. “CAN- CANopen (script) +Default+ -ICAN- o 9 oy
@Hait 0 ® <2 Wi ld © Time Show- Show Type- = Send Data & Trigger Setting " Enable Trigger OHide T Niiide G @_ :
Index Directio Time Mark Status Message Desaription Message Content 3
Node 1D M Segment Name | Segment gy Frame Standard Fi
19 Receive 19:46:33.763 NMT Error Control X Mod ot - K Valoe ~B wla Data:05
023 | Operationsl 1 NMTCommand Reset Node lid e .
Node 10| Node Status 2 Node D 023 T vehd | Frame Format ne
20 Receive 19:46:34.749 NMT Esvor Control Deta:05
0x23 | Operational 0
ID:0x
Node 1D Node Status I
21 Receve 19:46:35.754 NMT Esror Control 2 Data:05
0x23 | Operational oLe
Node ID | Node Status
2 Recove 19:46:36.749 NMT Esror Control D‘TM"I Data:05
023 | Operational 8123 @
NMT Command | Node ID
23 Send 19:46:37.081 Succe NMT Module Control Deta:81 23
ResetNode | 0x23
Send Sefing
24 Receve 19:46:37.099 NMT Error Control 01 oo Data:00
fror Cont :
023 | Bootup Send Type: Normal Send
Node ID| Node Status 2 1 -0
25 Receve 19:46:37.601 NMT Error Control 2 Number Of Frames: Intorval: me SendTimes: Data:7F
0x23 | Pre-operational
Node ID| Node Status
26 Recelve 19:46:38.594 NMT Eror Control Send Immediately Add To List Send From Script Data: 7F
023 | Pre-operational
Send List
27 Recelve 19:46:39.584 NMT Esror Control D NehThe In... Send Mes: Des... Me: Con... CANFi Fr.. Ti.. Inte. Data: 7F
1w : a
R sage Des... Message Con... rame
Node ID| Node Status
28 Receve 19:46:40.505 NMT Error Control . Data: 7F
023 | Pre-operational
Node ID| Node Status
29 Receive 19:46:41.578 NMT Error Control Data:7F
0x23 | Pre-operational
Node 1D| Node Status 2
M0 Racohn_10:46:2 597 MM Eeroe Control - .
Bus Error(CAN1) x
Index Error Description Error Information Time
Delete Send Cycle Times: !
mal S Trigger Disa

© 2023 Copyright, Qorvo International, Inc.

-23-

No portion of this document may be reproduced or reused in any form without Qorvo’s prior written consent.

PAC25140 CANopen Manual_v1.0.0

Qorvo

5. Node Status is change from [Operational] to [Boot-up], then change to [Pre-Operational].

CAN Frame >

Frame 1D:00000723 Data Frame Standard Frame DLC:01 Data:05

Frame 1D:00000723 Data Frame Standard Frame DLC:01 Data:05

Frame 10:00000723 Data Frame Standard Frame DLC:01 Data:05

Frame 1D:00000723 Data Frame Standard Frame DLC:01 Data:05

Frame 1D:00000000 Data Frame Standard Frame DLC:02 Data:81 23

Frame 10:00000723 Data Frame Standard Frame DLC:01 Data:00

Frame ID:00000723 Data Frame Standard Frame DLC:01 Data:7F

Frame 1D:00000723 Data Frame Standard Frame DLC:01 Data: 7F

Frame 1D:00000723 Data Frame Standard Frame DLC:01 Data:7F

Frame 1D:00000723 Data Frame Standard Frame DLC:01 Data:7F

Frame 1D:00000723 Data Frame Standard Frame DLC:01 Data: 7F

Erama IN:00000722 Nabs Erama Chandard Crama N C:01 Mata: 76

BB CANPro - [CANopen (script)]
File Operation View Window Help Language
TR R | L ~ CANIndex: © CAN1 ® CAN2 A | mBus Status |
_..:CAN- CANopen (script) +Default+ |-CAN-
@Halt © ® 2w W@ © Time Show- Show Type- = Send Data & Trigger Setting % Enable Trigger @ Hide Send Frame 3 Configure Protocol Manage Protocols
Index Directio Time Mark Status Message Description Message Content
Node 1D Node Status
19 Receive 19:46:33.763 NMT Error Control
0x23 | Operational
Node ID | Node Status
20 Receive 19:46:34.749 NMT Error Control
0x23 | Operational
Node ID | Node Status
21 Receive 19:46:35.754 NMT Error Control
0x23 | Operational
Node 1D Node Status
2 Receive 19:46:36.749 NMT Error Control
023 Operational
NMT Command = Node ID
23 Send 19:46:37.081 Succe NMT Module Control
Reset Node 0x23
= Node ID | Node Status
24 Receive 19:46:37.099 NMT Error Control
23 Boot up
Node ID | Node Status
25 Receive 19:46:37.601 NMT Error Control
0x23 | Pre-operational
Node ID | Node Status
26 Receive 19:46:38.594 NMT Error Control
0x23 | Pre-operational
Node ID| Node Status
27 Receive 19:46:39.584 NMT Esror Control
0x23 | Pre-operational
Node ID| Node Status
28 Receive 19:46:40.595 NMT Esror Control
0x23 | Pre-operational
Node ID Node Status
29 Receive 19:46:41.578 NMT Error Control
0x23 | Pre-operational
Node ID| Node Status
0 Dacohe_10:46:42.597 MM Eevae Control L
Bus Error(CAN1)
Index Error Description Error Information Time

Send:1 Normal S Trigger Disa

6. Protocol:

- Frame ID: 00000000

- Data Frame: 81 23
- CMD: Reset Node, Node ID: 0x23

- CAN ID: 000

Similar for Stop Remote Node, Pre-operational state and Reset Communication.

© 2023 Copyright, Qorvo International, Inc. - 24 -

PAC25140 CANopen Manual_v1.0.0

No portion of this document may be reproduced or reused in any form without Qorvo’s prior written consent.

Qorvo

4.2. Initiate SDO Upload/Download
4.2.1. Initiate SDO Download

Client Server

.Inil 200 Download request

CAN ID Data
Byte 0 Byte1 | Byte2 Byte 3 Bytle4 | Byte5 Byte6 | Byte7 >

f00+NedsTn| | <CMD> <IDX> | <sUBIDX> | <Data>

Here, the <CMD= byte is dependent on the length of the data that are to be written. <CMD= can be one of the following

values:

= | byte data length:
= 2 byte datz length:
= 3 byte data length:

‘|'|
T

[T S R]
(=)
E)

o~

= 4 pyte datz length:

Client Server

~.Inil SDOC Download confirm {OK)

CAN ID Data
- Byte 0 Byte1 | Byte2 Byte 3 Byte4d | Byte5 Byle6 | Byte7 |(

Se04MedeIn| | Ox&0 <IDK> |<suBtpx>| o0x00 | 000 | ox00 | 0x00

r— Init SDC Download confirm (error)

CAND _ _ Data _
- Byte 0 Byte1 | Byte? Byte 3 Byted | Bytes Byie 6 Byte7 | [

580+NodelID 0x20 | <IDE> [<suBIDX>| <ERROR CCDE>

Similar with Start Remote Control for step 1-3.

4. Select [Send Data] - 4.1. In the send window Select Message [Initiate SDO Download Request]
- 4.2. Set DLC: 8 - 4.3. Set Note ID: 0x23 - Index: 0x1017 (2bytes) - Sub-index: 0 - Transfer type:
Expedited - Size indication: Indicated - Bytes Note Data: 0x02 - SDO Data: 0xA5 5A - 4.4. Send
Immediately.

B8 CANPro - [CANopen (script)

File Operation View Window Help Language ~CANopen- Send Data (CAN1 - x

" U I | * CANIndex: © CAN1 ® CAN2 § =6us Status | Message Setting -
. -CAN- CANopen (script) +Default+ -4CAN- | @ =
EHat O 8 Lalild © Time Show- Show Type- = Send Data & Trigger Setting " Enable Trigger OHide Send Frame M Configul Message: Initiate SOO Download Request
Index Directio Time Mark Statur Message Description Message Content |
| In.. SegmentName S ralue s Valid? Frame T Standard Fr
i R - il 500 Dol Rskbost Node ID| Object Index| Object Sub-index | Transfer Ty
S Swcca: Seiieie SOO Dol o 1 NodelD 023 Valid
23 0x1017 00 Expedited
2 Object Index 0x1017 FrmFamu‘ Data Frame
Node ID | Object Index| Object Sub-inde
442 Receive 20:05:59.607 Initiate SDO Download Response fod Index) Objec — 3 |Object Sub-index 0x0 622
o3 0x1017 o0 ID:0x
4 Transfer Type Expedited I
Node ID| Node Status 5 Size Indicator Indicated 8
443 Recelve 20:06:21.760 NMT Error Control b
023 | Pre-operational 6 BytesNotData 02
00 Node ID| Node Status 7 Bytes Downloaded Segment |. DATM)(‘
444 Receive 20:06:44.5 NMT Ervor Control R e 3 'SDO Data OxAS 5A 00 00 Coved | 281710 00 A5 54 00 00
Node ID| Node Status
445 Receive 20:07:08.053 NMT Error Control
23 Pre-operational Send m
Node ID| Node Stat 4
446 Receive 20:07:31.108 NMT Error Control = SendType: |Normal Send
23 Pre-operational
| Number OfFrames: ! Interval: 1 Send Times: '
Node ID | Object Index| Object Sub-index | Transfer Ty o X o ot *
447 Send 20:07:43.973 Succe Initiste SDO Download Request
o2 | oa017 00 Expedited
Node ID| Object Index Object Sub-inde Send Immediately Add To List Send From Script
448 Receive 20:07:43.991 Initiste SDO Download Response et in yer o @
o2 | ox017 00 Send List
Node ID| Node Status In.. Send.. MessageDes.. Message Con.. CAN Frame Fr.. Ti.. Inte..
449 Receive 20:07:54.341 NMT Error Control
0x23 | Pre-operationsl
Node ID| Node Status
450 Receive 20:08:17 488 NMT Error Control
0x23 | Pre-operational
Node ID| Node Status
451 Receive 20:08:40.641 NMT Error Control
23 Pre-operational
{
Bus Eror(CAN1)
Index Error Description Error Information Time
Delete Send Cycle Times: !
S =
Send:3 Receive:1196 Normal 5 Trigger Disa

© 2023 Copyright, Qorvo International, Inc. - 25 - PAC25140 CANopen Manual_v1.0.0

No portion of this document may be reproduced or reused in any form without Qorvo’s prior written consent.

QoMrvo

5. CANalyst send a request download to PAC25140 to write the data to Index, then PAC2510 send a
response message to confirm.

B8 CANPro - [CANopen (script)] - x
File Operation View Window Help Language s
Pl svozf ~| CAN Index: | ® CAN1 ® CAN2 § s suaus
“CAN- CANopen (script) +Default+ -ICAN- w
E@Hait O ® aa 8 © Time Show: Show Type- = Send Data 4 Trigger Setting * Enable Trigger OHide Send Frame H Configure Protocol YManage Protocols
Index Directio Time Mark Status Message Description Message Content CAN Frame

Node ID| Node Status
446 Receive 20:07:31.198 NMT Error Control Frame 1D:00000723 Data Frame Standard Frame DLC:01 Data:7F
023 | Pre-operational

Node ID| Object Index Object Sub-index | Transfer Type | Size Indicator | Bytes Not Data| SDO Data
447 Send 20:07:43.973 Succe Initiate SDO Download Request Frame 1D:00000623 Data Frame Standard Frame DLC:08 Data:28 17 10 00 AS SA 00 00
023 0x1017 0x0 Expedited Indicated] OxAS 5A 00 00

Node ID| Object Index | Object Sub-index
448 Receive 20:07:43.991 Initiate SDO Download Response s s 3 Frame 1D:000005A3 Data Frame Standard Frame DLC:08 Data:60 17 10 00 00 00 00 00

Node ID| Node Status
449 Receive 20:07:54.341 NMT Error Control Frame 1D:00000723 Data Frame Standard Frame DLC:01 Data:7F
023 | Pre-operational

Node ID| Node Status
450 Receive 20:08:17.488 NMT Error Control Frame 1D:00000723 Data Frame Standard Frame DLC:01 Data: 7F
0x23 | Pre-operational

Node ID| Node Status
451 Receive 20:08:40.641 NMT Error Control Frame 10:00000723 Data Frame Standard Frame DLC:01 Data:7F
023 | Pre-operational

Node ID| Node Status
452 Receive 20:09:03.788 NMT Error Control Frame 1D:00000723 Data Frame Standard Frame DLC:01 Data:7F
0x23 | Pre-operational

Node ID| Node Status
453 Receive 20:09:26.939 NMT Error Control Frame 1D:00000723 Data Frame Standard Frame DLC:01 Data:7F
0x23 | Pre-operational

NodeID| Node Status
454 Receive 20:09:50.091 NMT Error Control Frame 10:00000723 Data Frame Standard Frame DLC:01 Data: 7F
0x23 | Pre-operational

Node ID| Node Status
455 Recelve 20:10:13.225 NMT Error Control Frame 1D:00000723 Data Frame Standard Frame DLC:01 Data:7F
023 | Pre-operational

Node ID| Node Status
456 Recetve 20:10:36.375 NMT Error Control Frame 10:00000723 Data Frame Standard Frame DLC:01 Data:7F
0x23 | Pre-operational

Bus Error(CAN1) x
Index Error Description _ Error Information Time
|

{ Send:3 Receive:1203 Normal S Trigger Disa

6. Protocol
6.1. Request:
- Frame ID: 00000623
- CAN ID: 600 + 23 (Node ID)
- Data Frame: 2B 17 10 00 A5 5A 00 00
- CMD: 2B (2byte data length)
Index: 1017
Sub-index: 0
2-byte data: A5 5A

=>» Data 0xA5 5A is written to Index: 0x1017

6.2. Confirm:
- Frame ID: 000005A3
- CAN ID: 580 + 23 (Node ID)
- Data Frame: 2B 17 10 00 A5 5A 00 00
- CMD: 60 (OK)
Index: 1017
Sub-index: 0
Byte4-7: 0

© 2023 Copyright, Qorvo International, Inc. - 26 - PAC25140 CANopen Manual_v1.0.0

No portion of this document may be reproduced or reused in any form without Qorvo’s prior written consent.

Qorvo

4.2.2. Initiate SDO Upload

Client Server
Init SDO Upload request
CAN ID Data
Byte 0 Byte1 | Byte2 Byte 3 Byte 4 Byte 5 Byte6 | Byte7 >
c00+NedeTn| | Ox40 | <IDX> | <sUBIDX>| 0x00 0x00 | 0x00 | 0x00
Client Server

— Init SDO Upload confirm (OK)

CAND _ . Data _
- Byte 0 Byte1 | Bye2 Byte 3 Byted | Bytes Byte 6 Byte7 ||

580+HodelD <CMD> <ID¥> <SUBIDX:> <Data>x

— Init 300 Upload confirm (error)

CAN ID Data
- Byte 0 Byle1 | Byte2 Byte 3 Byted | Byte5 Byte6 | Byte7 ||

580+HodelD 0x80 | <ID¥> <SUBIDX:> <ERRCE CODE>

The length of the data is encrypted inthe <CMD=> of the answer

1 byte data length: ~ 4F
2 byte data length: 4B
3 byte data length: 47,

4 byte data length: 43

Similar with Start Remote Control for step 1-3.

4. Select [Send Data] = 4.1. In the send window Select Message [Initiate SDO Upload Request] >
4.2. Set DLC: 8 - 4.3. Set Note ID: 0x23 - Index: 0x1017 (2bytes) - Sub-index: 0 - 4.4. Send
Immediately.

@8 canPro - [CANopen (script)]

File Operation View Window Help Language | -CANopen- Send Data (CAN1) = x e
o] B o " = CAN Index: & CAN1 ® CAN2 . ' Bus Status
-CAN- CANopen (script) | +Default+ -ICAN- Message Sefting .
@Holt & a8 © Time Show- Show Type- = Send Dota 4 Trigger Setting % Endble Trigger OHIdeSend | o0 /| gve SDO Upload Request @
Index Directio Time Mark ‘Status Message Desaription Message Content -
Node ID| Node Status In.. Segment Name Segment Value Is Valid? Frame T Standard Fr -
[\] Receive 20:27:57.878 NMT Error Control
0x23 | Pre-operational 1 Node D 023 Valid
| |2 Object index 0x1017 @ FrmFom\d‘ Data Frame
3 Object Sub-index 0x0 DO 623
I
plc 8 @
mmﬂ
40171000 00 00 00 00
Send Sefiing
Send Type: Normal Send
Number Of Frames: ! Interval: 1 me SendTimes: !
@MM Add To List Send From Script
Send List
In.. Send.. MessageDes.. MessageCon.. CANFrame Fr.. Ti.. Inte..
Bus Error(CANT)
Index Error Desdiption |Error Information Time
Delete Send Cycle Times: 1 v
1 ormal § Trigger Disa
© 2023 Copyright, Qorvo International, Inc. - 27 - PAC25140 CANopen Manual_v1.0.0

No portion of this document may be reproduced or reused in any form without Qorvo’s prior written consent.

QoMrvo

5. CANalyst send a request upload to PAC25140 to read data on the Index, then PAC2510 send a

response data to Confirm.

B CANPro - [CANopen (script
File Operation View Window Help Language
" RN IR | ~| CAN Index: ® CAN1 ® CAN2
“CAN- CANopen (script) +Default+ -ACAN-
@Hat 0 ® a8 © Time Show- Show Type- = Send Data & Trigger Setting % Enable Trigges GHide Send Frame M Configure Protocol Manage Protocols
Index Directio Time Mark Statur Message Description S i

§ =us status §

Message Content CAN Frame

Node ID| Node Status
0 Receive 20:27:57.878 NMT Error Control Frame ID:00000723 Data Frame Standard Frame DLC:01 Data:7F
023 ec
Node ID
Receive 20:28:21.026 NMT Error Control Frame 1D:00000723 Data Frame Standard Frame DLC:01 Data:7F
Node ID| Node Status
2 Receive 20:28:44.165 NMT Error Control Frame 1D:00000723 Data Frame Standard Frame DLC:01 Data: 7F
%23 | Pre-operational

Node ID| Object Index Object Sub-index
Succe Tnitiate SDO Upload Request Frame |
23 0x1017 o0

Send 20:29:02.853

Node ID| Object Index Object Sub-index | Transfer Type Size Indicator Bytes Not Data. SDO Data

4 Receive 20:29:02.870 Initiate SDO Upload Response Frame 1D:000005A3 Data Frame Standard Frame DL

(%5} o017 00 00 Expedited Indicated o2 OxAS 5A 00 00
Node ID| Node Status
Receive 20:29:07.313 NMT Error Control Frame 1D:00000723 Data Frame Standard Frame DLC

223 | Pre-operational

Bus Eor(CAN1)

Index Error Description Error Information Time

Send:5

6. Protocol
6.1. Request:
- Frame ID: 00000623
- CAN ID: 600 + 23 (Node ID)
- Data Frame: 40 17 10 00 00 00 00 00
- CMD: 40 (fixed)
Index: 1017
Sub-index: 0
Byte4-7: 0

6.2. Confirm:
- Frame ID: 000005A3
- CAN ID: 580 + 23 (Node ID)
- Data Frame: 4B 17 10 00 A5 5A 00 00
- CMD: 4B (2byte data length)
Index: 1017
Sub-index: 0
2-byte data: A5 5A

01 Data: 7F

Receive:1253

=>» Data OxA5 5A is written to Index: 0x1017, and can read by Upload Request.

© 2023 Copyright, Qorvo International, Inc. - 28 -

No portion of this document may be reproduced or reused in any form without Qorvo’s prior written consent.

C:08 Data:40 17 10 00 00 00 00 00

C:08 Data:48 17 10 00 AS 5A 00 00

Normal S Trigger Disa

PAC25140 CANopen Manual_v1.0.0

QoMrvo

Contact Information
For the latest specifications, additional product information, worldwide sales and distribution locations:
Web: www.gorvo.com
Tel: 1-844-890-8163
Email: customer.support@gorvo.com

Important Notice
The information contained herein is believed to be reliable; however, Qorvo makes no warranties regarding the
information contained herein and assumes no responsibility or liability whatsoever for the use of the
information contained herein. All information contained herein is subject to change without notice. Customers
should obtain and verify the latest relevant information before placing orders for Qorvo products. The
information contained herein or any use of such information does not grant, explicitly or implicitly, to any party
any patent rights, licenses, or any other intellectual property rights, whether with regard to such information
itself or anything described by such information. THIS INFORMATION DOES NOT CONSTITUTE A
WARRANTY WITH RESPECT TO THE PRODUCTS DESCRIBED HEREIN, AND QORVO
HEREBY DISCLAIMS ANY AND ALL WARRANTIES WITH RESPECT TO SUCH PRODUCTS
WHETHER EXPRESS OR IMPLIED BY LAW, COURSE OF DEALING, COURSE OF
PERFORMANCE, USAGE OF TRADE OR OTHERWISE, INCLUDING THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
Without limiting the generality of the foregoing, Qorvo products are not warranted or authorized for use as
critical components in medical, life-saving, or life-sustaining applications, or other applications where a failure
would reasonably be expected to cause severe personal injury or death.

Copyright 2019 © Qorvo, Inc. | Qorvo is a registered trademark of Qorvo, Inc.

© 2023 Copyright, Qorvo International, Inc. - 29 - PAC25140 CANopen Manual_v1.0.0

No portion of this document may be reproduced or reused in any form without Qorvo’s prior written consent.

mailto:customer.support@qorvo.com

	OLE_LINK34
	OLE_LINK34
	Doc_Date
	OLE_LINK3
	OLE_LINK4
	OLE_LINK6
	OLE_LINK7
	OLE_LINK40
	OLE_LINK42
	OLE_LINK45
	OLE_LINK51
	OLE_LINK50
	OLE_LINK47
	OLE_LINK53
	OLE_LINK49
	OLE_LINK52
	OLE_LINK43
	OLE_LINK54
	OLE_LINK55
	OLE_LINK56
	OLE_LINK114
	OLE_LINK57
	OLE_LINK58
	OLE_LINK72
	OLE_LINK78
	OLE_LINK64
	OLE_LINK65
	OLE_LINK71
	OLE_LINK69
	OLE_LINK67
	OLE_LINK66
	OLE_LINK76
	OLE_LINK76
	OLE_LINK75
	OLE_LINK73
	OLE_LINK74
	OLE_LINK77
	OLE_LINK79
	OLE_LINK80
	OLE_LINK81
	OLE_LINK82
	OLE_LINK83
	OLE_LINK85
	OLE_LINK88
	OLE_LINK84
	OLE_LINK87
	OLE_LINK97
	OLE_LINK98
	OLE_LINK99
	OLE_LINK100
	OLE_LINK104
	OLE_LINK105
	OLE_LINK107
	OLE_LINK113
	OLE_LINK118
	OLE_LINK119
	OLE_LINK120
	OLE_LINK121
	OLE_LINK122
	OLE_LINK123
	OLE_LINK124
	OLE_LINK125
	OLE_LINK127
	OLE_LINK128
	OLE_LINK129
	OLE_LINK126
	OLE_LINK130

