April 1, 2016

    Brent Dietz sees and hears a lot of industry jargon. He's the director of corporate communications at Qorvo. Thinking about the terms that make him smile, he took a few moments to share them with Microwave Journal readers:

    Listen to any earnings call for a company in the RF space and you're bound to hear terminology that may sound like a foreign language: hexaplexers, diversity-receive modules, TC-SAW, impedance tuners, transimpedance amplifiers and acronyms like MIMO, AESA, GaN and iFEM. While we affectionately call them the "made up" words of RF, these technologies are vital to solving today's challenges in mobile handsets, wireless infrastructure and defense applications.

    To help commemorate April Fools' Day, here are five of our favorite "made up" industry terms and what they mean for our hyper-connected world.

    BAW: The sound a mechanical sheep makes.

    In the RF space, a bulk acoustic wave (BAW) filter uses acoustic waves to allow only particular frequencies or bands of frequencies to pass through, while blocking unwanted signals. BAW is particularly well suited for interference problems at high frequencies and has found its way into everything from marquee smartphones to automotive navigation and defense radar systems.

    Multiplexer: A duplexer after a cup of high-octane coffee.

    Mobile device users can both upload (called "uplink") and download (called "downlink") content from the Internet. Like duplexers, multiplexers ensure that transmissions on the uplink do not interfere with reception on the downlink; however, multiplexers take this a step further, allowing transmission of multiple data streams at the same time in one, complex signal, while extending battery life. This technology helps mobile providers increase data rates by combining two (and soon three) cellular bands, known as carrier aggregation (CA).

    GaN on SiC: Half the periodic table in a single phrase.

    Gallium nitride (GaN) is a relatively new technology compared to other compound semiconductors, like silicon germanium (SiGe) and gallium arsenide (GaAs), but it's become the technology of choice for power-hungry applications that require signal transmissions over long distances or at higher power levels (think radar, satellites and cellular base stations). With great power density comes great responsibility — ahem, higher temperatures. The superior thermal conductivity of silicon carbide (SiC) helps keep GaN on SiC devices cool, enhancing performance and reliability.

    Power Doublers: The technology named by engineers.

    Indeed, the name says it all. Power doubler amplifier modules are designed to meet high output requirements at the lowest power consumption and often feature GaN on SiC and GaAs (see above) technologies. With the rollout of new, high-performance cable broadband, deemed "DOCSIS 3.1", power doublers are becoming increasingly important for ensuring proper deployment, performance and reliability of cable TV (CATV) DOCSIS 3.1 systems.

    802.11p: The Dewey decimal number for RF.

    802.11p is an approved amendment of the Wi-Fi 802.11 standard to add wireless access in vehicle environments (WAVE), making it a key driver of the connected car reality. Products under the 802.11p standard — including power amplifiers, low noise amplifiers and Wi-Fi LTE coexistence filters — support intelligent transportation systems, including vehicle-to-vehicle and vehicle-to-roadway data exchange. By connecting a car to other cars and its surroundings, 802.11p products enable new driving efficiencies, safety features and design possibilities for car manufacturers.

    Have a favorite #RFMadeUpWord? Be sure to share in the comments and with us on social @QorvoInc.

    Interested in learning more about the technology behind the terms? Check out the following resources:

    Brent Dietz

    About the Author

    Brent Dietz
    Director of Corporate Communications

    Brent has seen a lot of engineering and technology during 30+ years in the tech industry. His primary role is making geek-speak understandable to the non-geek public, reporters and nontechnical analysts. It's challenging — simplifying without distorting — and it helps to have a sense of humor. Brent does, which he shares with readers from time to time.

    • Innovation
      Bulk Acoustic Wave (BAW)

      Qorvo's bulk acoustic wave technology solves the toughest RF interference challenges.

    • Innovation
      Gallium Nitride (GaN)

      Discover how Qorvo’s GaN technology is advancing defense, aerospace and commercial applications.

    • Applications
      Carrier Aggregation

      Our high-performance RF solutions solve network congestion by enabling carrier aggregation.

    • Applications
      Advanced Filter Solutions

      Our multiplexers and discrete RF filters/duplexers help tackle the toughest interference problems for mobile devices.

    • Applications
      Customer Premises Equipment

      Our Wi-Fi products enable high-performance RF solutions for customer premises equipment.

    • Applications
      Cable TV

      Qorvo's CATV products bring leading-edge technology and best-in-class performance for broadband access markets.

    • Applications
      Automotive

      Qorvo's automotive portfolio includes active and passive devices to meet the harsh requirements of the automotive industry.