Product Description

The QM11022A is a dual-pole double-throw transfer switch designed for general purpose switching applications where RF port transfer (port swapping) control is needed. The low insertion loss along with excellent linearity performance makes the QM11022A ideal for multi-mode GSM, EDGE, UMTS, and LTE handset applications. The RF ports can be directly connected in 50Ω systems and control logic is compatible with 1.3 V to 2.7 V systems. The supply voltage is intended for connection to 2.8 V systems but the device is operable from 2.4 V to 5.5 V . The compact $1.1 \mathrm{~mm} \times 1.5 \mathrm{~mm}$ size offers mobile handset designers an easy-to-use switch component for quick integration into multimode, multi-band systems.

Functional Block Diagram

10 Pin $1.1 \times 1.5 \times 0.59 \mathrm{~mm}$ Package

Feature Overview

- Low Insertion Loss
- High Port-to-Port Isolation
- GPIO Interface for 1.3V to 2.7V Control Logic
- Broadband Performance Suitable for All Cellular Modulation Schemes up to 8.25 GHz
- Very Low Current Consumption
- Linearity and Harmonic Performance Ideally Suited for LTE Applications
- DC blocking capacitors are not required in typical applications

Applications

- Cellular Handset Applications
- Cellular Modems and USB Devices
- Multi-Mode GSM, EDGE, WCDMA, and LTE Applications

Ordering Information

PART NO.	DESCRIPTION
QM11022ASB	5-pc Sample Bag
QM11022ASR	100-pc, 7" Reel
QM11022ATR13-10K	10,000-pc, 13" Reel
QM11022APCK	Fully Assembled EVB

Absolute Maximum Ratings

PARAMETER	RATING
Storage Temperature	-65 to $+150^{\circ} \mathrm{C}$
Operating Temperature	-30 to $+90^{\circ} \mathrm{C}$
$\mathrm{V}_{\text {DD }}$	-0.5 to 6.0 V
C_{TL}	-0.5 to 3.0 V
Maximum Input Power	$39 \mathrm{dBm}, 1: 1 \mathrm{VSWR},+90^{\circ} \mathrm{C}, 12.5 \% \mathrm{DC}$

Operation of this device outside the parameter ranges given above may cause permanent damage.

Recommended Operating Conditions

PARAMETER	MIN.	TYP.	MAX.	UNITS
V $_{\text {DD }}$ Supply Voltage	2.4	2.8	5.5	V
V $_{\text {DD }}$ Supply Current	-	57	80	$\mu \mathrm{~A}$
C $_{\text {TL }}$ Logic Low Voltage	0.00	0.00	0.45	V
C $_{\text {TL }}$ Logic High Voltage	1.3	1.8	2.7	V
C $_{\text {TL Logic High Current }}$	-	0.1	5	$\mu \mathrm{~A}$
Turn On Time -50% Vdd to 90% RF	-	-	20	$\mu \mathrm{~s}$
Switching Speed -10% to 90% RF	-	3.4	8	$\mu \mathrm{~s}$

Electrical specifications are measured at specified test conditions. Specifications are not guaranteed over all recommended operating conditions.

QM11022A
High Isolation DPDT Transfer Switch

Electrical Specifications

Test conditions unless otherwise stated: all unused RF ports terminated in 50Ω, Input and Output $=50 \Omega, \mathrm{~T}=25^{\circ} \mathrm{C}, \mathrm{V} D \mathrm{DD}=2.8 \mathrm{~V}$, Logic State = RF1-RF4; RF2-RF3 and RF1-RF3; RF2-RF4

PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNITS
Frequency Range		698		960	MHz
Insertion Loss					
RF1 to RF3	Logic State $=$ RF1-RF3, RF2-RF4	-	0.30	0.48	dB
RF1 to RF4	Logic State = RF1-RF4, RF2-RF3	-	0.31	0.48	dB
RF2 to RF3	Logic State = RF1-RF4, RF2-RF3	-	0.29	0.48	dB
RF2 to RF4	Logic State $=$ RF1-RF3, RF2-RF4	-	0.30	0.48	dB
Insertion Loss Over Temperature					
RF1 to RF3	Temp $=-30^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	-	0.31	0.6	dB
RF1 to RF4	Temp $=-30^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	-	0.32	0.6	dB
RF2 to RF3	Temp $=-30^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	-	0.31	0.6	dB
RF2 to RF4	Temp $=-30^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	-	0.32	0.6	dB
Isolation					
RF1 to RF3, RF2 to RF4	Logic State $=$ RF1-RF4, RF2-RF3	40	42	-	dB
RF1 to RF4, RF2 to RF3	Logic State $=$ RF1-RF3, RF2-RF4	44	48	-	dB
RF1 to RF2, RF3 to RF4	Logic State $=$ RF1-RF4, RF2-RF3	44	47	-	dB
RF1 to RF2, RF3 to RF4	Logic State $=$ RF1-RF3, RF2-RF4	40	44	-	dB
Harmonics					
$2^{\text {nd }}$ Harmonic	Frequency $=824 \mathrm{MHz}$ to 915 MHz ; $\mathrm{Pin}=$ 25dBm; CW	-	-85	-65	dBm
$3{ }^{\text {nd }}$ Harmonic		-	-87	-65	dBm
Up to 12.75GHz		-	-130	-80	dBm
$2^{\text {nd }}$ Harmonic (B13)	Frequency $=786.5 \mathrm{MHz} ;$ Pin $=25 \mathrm{dBm} ; \mathrm{CW}$	-	-85	-65	dBm
$2^{\text {nd }}$ Harmonic	Frequency $=824 \mathrm{MHz} ;$ Pin $=35 \mathrm{dBm} ; \mathrm{CW}$	-	-63	-50	dBm
$3{ }^{\text {rd }}$ Harmonic		-	-57	-45	dBm
IIP2	$\mathrm{F} 1=26 \mathrm{dBm} ; \mathrm{F} 2=-20 \mathrm{dBm}$				
Band 5 \& 6	$\begin{aligned} & \mathrm{F} 1=836.5 \mathrm{MHz} ; \mathrm{F} 2=1718 \mathrm{MHz} ; \text { Rx Freq }= \\ & 881.5 \mathrm{MHz} \end{aligned}$	110	130	-	dBm
IIP3	$\mathrm{F} 1=20 \mathrm{dBm} ; \mathrm{F} 2=-15 \mathrm{dBm}$				
Band 5 \& 6	$\begin{aligned} & \mathrm{F} 1=836.5 \mathrm{MHz} ; \mathrm{F} 2=791.5 \mathrm{MHz} ; \text { Rx Freq }= \\ & 881.5 \mathrm{MHz} \end{aligned}$	65	77	-	dBm
VSWR					
RF1, RF2, RF3, RF4	698 MHz to 960 MHz	-	1.11	1.3	:1

QM11022A High Isolation DPDT Transfer Switch

PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNITS
Frequency Range		1425		2200	MHz
Insertion Loss					
RF1 to RF3	Logic State = RF1-RF3, RF2-RF4	-	0.39	0.59	dB
RF1 to RF4	Logic State = RF1-RF4, RF2-RF3	-	0.38	0.59	dB
RF2 to RF3	Logic State = RF1-RF4, RF2-RF3	-	0.38	0.59	dB
RF2 to RF4	Logic State $=$ RF1-RF3, RF2-RF4	-	0.37	0.59	dB
Insertion Loss Over Temperature					
RF1 to RF3	Temp $=-30^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	-	0.43	0.72	dB
RF1 to RF4	Temp $=-30^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	-	0.42	0.72	dB
RF2 to RF3	Temp $=-30^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	-	0.42	0.72	dB
RF2 to RF4	Temp $=-30^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	-	0.42	0.72	dB
Isolation					
RF1 to RF3, RF2-RF4	Logic State = RF1-RF4, RF2-RF3	34	37	-	dB
RF1 to RF4, RF2-RF3	Logic State $=$ RF1-RF3, RF2-RF4	38	42	-	dB
RF1 to RF2, RF3 to RF4	Logic State $=$ RF1-RF4, RF2-RF3	38	41	-	dB
RF1 to RF2, RF3 to RF4	Logic State $=$ RF1-RF3, RF2-RF4	34	38	-	dB
Harmonics					
$2^{\text {nd }}$ Harmonic	Frequency $=1710 \mathrm{MHz}$ to $1910 \mathrm{MHz} ; \mathrm{P}_{\text {in }}=$ 25dBm; CW	-	-77	-65	dBm
$3{ }^{\text {nd }}$ Harmonic		-	-81	-65	dBm
Up to 12.75GHz		-	-115	-80	dBm
$2^{\text {nd }}$ Harmonic	Frequency $=1910 \mathrm{MHz} ; \mathrm{P}_{\text {in }}=33 \mathrm{dBm} ; \mathrm{CW}$	-	-59	-50	dBm
$3{ }^{\text {nd }}$ Harmonic		-	-56	-45	dBm
IIP2	$\mathrm{F} 1=26 \mathrm{dBm} ; \mathrm{F} 2=-20 \mathrm{dBm}$				
Band II (PCS)	$\begin{aligned} & \mathrm{F} 1=1880 \mathrm{MHz} ; \mathrm{F} 2=3840 \mathrm{MHz} ; \text { Rx Freq }= \\ & 1960 \mathrm{MHz} \end{aligned}$	110	122	-	dBm
IIP3	$\mathrm{F} 1=20 \mathrm{dBm} ; \mathrm{F} 2=-15 \mathrm{dBm}$				
Band 2 (PCS)	$\begin{aligned} & \mathrm{F} 1=1880 \mathrm{MHz} ; \mathrm{F} 2=1800 \mathrm{MHz} ; \text { Rx Freq }= \\ & 1960 \mathrm{MHz} \end{aligned}$	65	76	-	dBm
Band 1 (IMT)	$\begin{aligned} & \mathrm{F} 1=1950 ; \text { F2 }=1760 \mathrm{MHz} ; \text { Rx Freq }= \\ & 2140 \mathrm{MHz} \end{aligned}$	65	75	-	dBm
VSWR					
RF1, RF2, RF3, RF4	1425MHz to 2200 MHz	-	1.30	1.5	:1

PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNITS
Frequency Range		2300		2690	MHz
Insertion Loss					
RF1 to RF3	Logic State $=$ RF1-RF3, RF2-RF4	-	0.47	0.67	dB
RF1 to RF4	Logic State $=$ RF1-RF4, RF2-RF3	-	0.45	0.67	dB
RF2 to RF3	Logic State = RF1-RF4, RF2-RF3	-	0.46	0.67	dB
RF2 to RF4	Logic State $=$ RF1-RF3, RF2-RF4	-	0.46	0.67	dB
Insertion Loss Over Temperature					
RF1 to RF3	Temp $=-30^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	-	0.51	0.87	dB
RF1 to RF4	Temp $=-30^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	-	0.49	0.87	dB
RF2 to RF3	Temp $=-30^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	-	0.50	0.87	dB
RF2 to RF4	Temp $=-30^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	-	0.50	0.87	dB
Isolation					
RF1 to RF3, RF2 to RF4	Logic State $=$ RF1-RF4, RF2-RF3	30	35	-	dB
RF1 to RF4, RF2 to RF3	Logic State = RF1-RF3, RF2-RF4	35	40	-	dB
RF1 to RF2, RF3 to RF4	Logic State $=$ RF1-RF4, RF2-RF3	35	40	-	dB
RF1 to RF2, RF3 to RF4	Logic State $=$ RF1-RF3, RF2-RF4	30	36	-	dB
Harmonics					
$2^{\text {nd }}$ Harmonic	Frequency $=2500 \mathrm{MHz}$ to 2570 MHz ; $\mathrm{Pin}=$ 25dBm; CW	-	-72	-60	dBm
$3^{\text {nd }}$ Harmonic		-	-78	-60	dBm
IIP2	$\mathrm{F} 1=20 \mathrm{dBm} ; \mathrm{F} 2=-15 \mathrm{dBm}$				
Band 7	$\begin{aligned} & \text { F1 }=2535 \mathrm{MHz} ; \text { F2 }=120 \mathrm{MHz} ; \text { Rx Freq }= \\ & 2655 \mathrm{MHz} \end{aligned}$	110	120	-	dBm
IIP3	$\mathrm{F} 1=20 \mathrm{dBm} ; \mathrm{F} 2=-15 \mathrm{dBm}$				
Band 7	$\begin{aligned} & \mathrm{F} 1=2535 \mathrm{MHz} ; \mathrm{F} 2=2415 \mathrm{MHz} ; \text { Rx Freq }= \\ & 2655 \mathrm{MHz} \end{aligned}$	65	74	-	dBm
VSWR					
RF1, RF2, RF3, RF4	2300 MHz to 2690 MHz	-	1.33	1.5	:1

QM11022A High Isolation DPDT Transfer Switch

PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNITS
Frequency Range		3400		3800	MHz
Insertion Loss					
RF1 to RF3	Logic State $=$ RF1-RF3, RF2-RF4	-	0.61	0.88	dB
RF1 to RF4	Logic State $=$ RF1-RF4, RF2-RF3	-	0.58	0.88	dB
RF2 to RF3	Logic State $=$ RF1-RF4, RF2-RF3	-	0.59	0.88	dB
RF2 to RF4	Logic State $=$ RF1-RF3, RF2-RF4	-	0.58	0.88	dB
Insertion Loss Over Temperature					
RF1 to RF3	Temp $=-30^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	-	0.68	1.2	dB
RF1 to RF4	Temp $=-30^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	-	0.64	1.2	dB
RF2 to RF3	Temp $=-30^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	-	0.65	1.2	dB
RF2 to RF4	Temp $=-30^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	-	0.65	1.2	dB
Isolation		Logic State $=$ RF1-RF4, RF2-RF3	29	33	-
RF1 to RF3, RF2 to RF4	Logic State $=$ RF1-RF3, RF2-RF4	35	39	-	dB
RF1 to RF4, RF2 to RF3	Logic State $=$ RF1-RF4, RF2-RF3	35	39	-	dB
RF1 to RF2, RF3 to RF4	Logic State $=$ RF1-RF3, RF2-RF4	29	34	-	dB
RF1 to RF2, RF3 to RF4					
VSWR	3400MHz to $3800 M H z$	-	1.5	1.7	$: 1$
RF1, RF2, RF3, RF4					

Frequency Range		4000		6000	MHz
Insertion Loss					
RF1 to RF3	Logic State $=$ RF1-RF3, RF2-RF4	---	1.1	1.7	dB
RF1 to RF4	Logic State $=$ RF1-RF4, RF2-RF3	---	1.0	1.7	dB
RF2 to RF3	Logic State $=$ RF1-RF4, RF2-RF3	---	1.1	1.7	dB
RF2 to RF4	Logic State $=$ RF1-RF3, RF2-RF4	---	1.0	1.7	dB
Isolation					
RF1 to RF3, RF2 to RF4	Logic State $=$ RF1-RF4, RF2-RF3	25	32	---	dB
RF1 to RF4, RF2 to RF3	Logic State $=$ RF1-RF3, RF2-RF4	31	38	---	dB
RF1 to RF2, RF3 to RF4	Logic State $=$ RF1-RF4, RF2-RF3	31	38	---	dB
RF1 to RF2, RF3 to RF4	Logic State $=$ RF1-RF3, RF2-RF4	25	32	---	dB
VSWR					
RF1, RF2, RF3, RF4	5000MHz to 6000 MHz				

QM11022A High Isolation DPDT Transfer Switch

Frequency Range *		5925		6425	MHz
Insertion Loss					
RF1 to RF3	Logic State $=$ RF1-RF3, RF2-RF4	---	1.15	---	dB
RF1 to RF4	Logic State $=$ RF1-RF4, RF2-RF3	---	1.20	---	dB
RF2 to RF3	Logic State $=$ RF1-RF4, RF2-RF3	---	1.14	---	dB
RF2 to RF4	Logic State $=$ RF1-RF3, RF2-RF4	---	1.29	---	dB
Isolation					
RF1 to RF3, RF2 to RF4	Logic State $=$ RF1-RF4, RF2-RF3	---	38	---	dB
RF1 to RF4, RF2 to RF3	Logic State $=$ RF1-RF3, RF2-RF4	---	35	---	dB
RF1 to RF2, RF3 to RF4	Logic State $=$ RF1-RF4, RF2-RF3	---	37	---	dB
RF1 to RF2, RF3 to RF4	Logic State $=$ RF1-RF3, RF2-RF4	---	33	---	dB
VSWR					
RF1, RF2, RF3, RF4	5925MHz to $6425 M H z$	---	2.0	---	$: 1$

See UWB Matching Schematic on next page

Frequency Range *		6420		6920	MHz
Insertion Loss					
RF1 to RF3	Logic State = RF1-RF3, RF2-RF4	---	1.18	---	dB
RF1 to RF4	Logic State $=$ RF1-RF4, RF2-RF3	---	1.19	---	dB
RF2 to RF3	Logic State $=$ RF1-RF4, RF2-RF3	---	1.18	---	dB
RF2 to RF4	Logic State $=$ RF1-RF3, RF2-RF4	---	1.20	---	dB
Isolation					
RF1 to RF3, RF2 to RF4	Logic State $=$ RF1-RF4, RF2-RF3	---	30	---	dB
RF1 to RF4, RF2 to RF3	Logic State $=$ RF1-RF3, RF2-RF4	---	35	---	dB
RF1 to RF2, RF3 to RF4	Logic State $=$ RF1-RF4, RF2-RF3	---	33	---	dB
RF1 to RF2, RF3 to RF4	Logic State $=$ RF1-RF3, RF2-RF4	---	32	---	dB
VSWR					
RF1, RF2, RF3, RF4	6420MHz to 6920MHz	---	1.8	---	$: 1$

See UWB Matching Schematic on next page

Frequency Range *		7740		8250	MHz
Insertion Loss					
RF1 to RF3	Logic State = RF1-RF3, RF2-RF4	---	1.46	---	dB
RF1 to RF4	Logic State = RF1-RF4, RF2-RF3	---	1.26	---	dB
RF2 to RF3	Logic State = RF1-RF4, RF2-RF3	---	1.48	---	dB
RF2 to RF4	Logic State $=$ RF1-RF3, RF2-RF4	---	1.07	---	dB
Isolation					
RF1 to RF3, RF2 to RF4	Logic State = RF1-RF4, RF2-RF3	---	27	---	dB
RF1 to RF4, RF2 to RF3	Logic State = RF1-RF3, RF2-RF4	---	28	---	dB
RF1 to RF2, RF3 to RF4	Logic State = RF1-RF4, RF2-RF3	---	25	---	dB
RF1 to RF2, RF3 to RF4	Logic State = RF1-RF3, RF2-RF4	---	28	---	dB
VSWR					
RF1, RF2, RF3, RF4	7740MHz to 8250MHz	---	1.7	---	$: 1$

[^0]

Red Trace $=$ without matching \quad Blue Trace $=$ with matching

Application Circuit Schematic

NOTES:

1. C1 \& C3 placement recommended as close to the device as possible
2. $\mathrm{C} 2 \& \mathrm{C} 4$ optional

Pin Configuration and Description

Top View

PIN NO.	LABEL	DESCRIPTION
1	GND	Ground
2	RF3	RF Port connecting to either RF1 or RF2. Avoid applying DC voltage
3	GND	Ground
4	RF1	RF Port connecting to either RF3 or RF4. Avoid applying DC voltage
5	GND	Ground
6	RF2	RF Port connecting to either RF3 or RF4. Avoid applying DC voltage
7	GND	Ground
8	RF4	RF Port connecting to either RF1 or RF2. Avoid applying DC voltage
9	CTL	Logic Control pin
10	VDD	Power Supply pin

Control Logic

The Switch is controlled by $V_{D D}$ and $C_{T L}$.

LOGIC STATE	VDD	CTL	DESCRIPTION
RF1-RF3;RF2-RF4	"VDD"	Low	RF1 connected to RF3 and RF2 connected to RF4
RF1-RF4;RF2-RF3	"VDD"	High	RF1 connected to RF4 and RF2 connected to RF3

Power On and Off Sequence

It is very important that the user adheres to the correct power-on/off sequence in order to avoid damaging the part. First apply Vdd before applying a high to C_{TL}.

Power On -

1. Apply voltage supply $-V_{D D}$
2. Apply Logic signal - CTL
3. Wait 5μ s or greater after C_{TL} is stable and then apply the RF signal

Power Off -

1. Remove the RF signal
2. Remove the logic signal - C_{T}
3. Remove the voltage supply $-V_{D D}$

QM11022A
High Isolation DPDT Transfer Switch

Mechanical Information

Notes:

1. All dimensions are in milimeters. Angles are in degrees.
2. Dimension and tolerance formats conform to ASME Y14.4M-1994.
3. The terminal \#1 identifier and terminal numbering conform to JESD 95-1 SPP-012.

Branding Diagram

If included on branding diagram, YY indicates year; $W W$ indicates work week; and Trace Code is a sequential number assigned at device assembly.

Example:

Four digit trace code: WY01 Marking on the device: WY

Tape and Reel Information

Qorvo Part Number	Reel Diameter Inch (mm)	Hub Diameter Inch (mm)	Width (mm)	Pocket Pitch (mm)	Feed	Units Per Reel
QM11022ATR13-10K	13 (330)	4 (102)	8	4	Single	10,000
QM11022ASR	7 (178)	2.5 (63)	8	4	Single	100

Direction of Feed

Figure 1. $1.10 \mathrm{~mm} \times 1.50 \mathrm{~mm}$ (Carrier Tape Drawing with Part Orientation).

Handling Precautions

PARAMETER	RATING	STANDARD	Caution!
ESD - Human Body Model (HBM)	Class 2	ESDA/JEDEC JS-001-2012	
MSL - Moisture Sensitivity Level	Level 3	IPC/JEDEC J-STD-020	

Compatible with both lead-free ($260^{\circ} \mathrm{C}$ max. reflow temperature) and tin/lead ($245^{\circ} \mathrm{C}$ max. reflow temperature) soldering processes.
Package lead plating: Electrolytic plated Au over Ni

RoHS Compliance

This part is compliant with the 2011/65/EU RoHS directive (Restrictions on the Use of Certain Hazardous Substances in Electrical and Electronic Equipment), as amended by Directive 2015/863/EU.

This product also has the following attributes:

- Lead free
- Halogen Free (Chlorine, Bromine)
- Antimony Free
- TBBP-A $\left(\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{Br}_{4} \mathrm{O}_{2}\right)$ Free
- SVHC Free

Revision History

Revision Code	Date	Comments
Rev D	$11 / 20 / 2017$	Initial Release
Rev E	$11 / 30 / 2017$	Updated LB Frequency Range
Rev F	$7 / 18 / 2018$	Updated EVB Part Number
Rev G	$8 / 18 / 2020$	Updated with higher frequency data and matching schematic
Rev H	$7 / 31 / 2023$	Updated UWB frequency specs

Contact Information

For the latest specifications, additional product information, worldwide sales and distribution locations:
Web: www.qorvo.com
Tel: 1-844-890-8163
Email: customer.support@qorvo.com

Important Notice

[^1]
[^0]: * See UWB Matching Schematic on next page

[^1]: The information contained herein is believed to be reliable. Qorvo makes no warranties regarding the information contained herein. Qorvo assumes no responsibility or liability whatsoever for any of the information contained herein. Qorvo assumes no responsibility or liability whatsoever for the use of the information contained herein. The information contained herein is provided "AS IS, WHERE IS" and with all faults, and the entire risk associated with such information is entirely with the user. All information contained herein is subject to change without notice. Customers should obtain and verify the latest relevant information before placing orders for Qorvo products. The information contained herein or any use of such information does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other intellectual property rights, whether with regard to such information itself or anything described by such information.

 Qorvo products are not warranted or authorized for use as critical components in medical, life-saving, or life-sustaining applications, or other applications where a failure would reasonably be expected to cause severe personal injury or death.
 Copyright 2016 © Qorvo, Inc. | Qorvo is a registered trademark of Qorvo, Inc.

